FunctionThioesterase (TE) catalyzes the break of an ester bond to produce acid and alcohol at a thiol group. TEs are substrate-specific.
- Palmitoyl protein TE removes fatty acids like palmitate from modified cysteine residues during lysosomal degradation[1]. For details see Palmitoyl protein thioesterase.
- 4-hydroxybenzoyl-CoA TE converts 4-hydroxybenzoyl-CoA to 4-hydroxybenzoate and CoA[2].
- Acyl-CoA TE hydrolyzes acyl-CoA to the fatty acid and CoA and is involved in lipid metabolism[3]. See also YbgC.
- Fluoroacetyl-CoA TE from Streptomyces cattleya hydrolyzes fluoroacetyl-CoA thus preventing it from being metabolized to the lethal 4-hydroxy-trans-aconitate[4].
- Ubiquitin TE or ubiquitin carboxyl-terminal hydrolase (USP) removes conjugated ubiquitin (UB) from proteins thus regulating protein level by preventing their degradation. USP hydrolyze the peptide bond at the C-terminal glycine of ubiquitin. The USPs are involved in the processing of poly-UB precursors and of ubiquitinated proteins[5]. USP contains catalytic domain surrounded several domains: Ub-like (UBL); Ub-associated (UBA); zinc finger-Ub-specific protease domain (UBP or DUSP); TRAF homology domain.
- USP-L1, USP25 hydrolyze C-terminal adducts of UB.
- USP-L3 hydrolyzes C-terminal adducts of UB and NEDD8.
- USP5 cleaves multiubiquitin polymers.
- USP6 has ATP-independent isopeptidase activity.
- USP7, USP4, USP13, USP15 deubiquitinate several proteins.
- USP8 removes conjugated ubiquitin from proteins thus preventing protein degradation. USP8 is involved in cell proliferation and is active in the M phase of proliferation.
- USP11, USP14 are proteasome-associated.
- USP12 stabilizes T-cell complexes[6].
- USP16, USP21 deubiquitinate histone H2A.
- USP18 is a down regulator of the type I interferon signaling pathway[7].
- USP28 deubiquitinates proteins of the DNA damage pathway.
- USP33 regulates centrosome duplication.
- USP37 deubiquitinates cyclin A.
- USP46 deubiquitinates AMPA receptor[8].
DiseaseMutations in palmiotoyl protein TE cause neuronal ceroid lipocfuscinosis[9][10].
Structural highlights. Ubiquitin thioesterase 2 active site contains the . The metal-binding enzyme contains a . The [11].
| |
3D structures of thioesterase3D structures of thioesterase
Updated on 21-February-2018
{"openlevels":0}
- Maristoyl-ACP-specific thioesterase
- 1tht – TE – Vibrio harveyi
- 4-hydroxybenzoyl-CoA thioesterase
- 1bvq – PsTE – Pseudomonas
- 1lo7 – PsTE + 4-hydroxyphenyl CoA
- 1lo9 - PsTE (mutant) + 4-hydroxybenzoyl CoA
- 1lo8 - PsTE + 4-hydroxybenzyl CoA
- 1q4s - ArTE + 4-hydroxybenzoate – 'Arthrobacter'
- 1q4t - ArTE + 4-hydroxyphenyl CoA
- 1q4u - ArTE + 4-hydroxybenzyl CoA
- 3r32, 3r35, 3r37, 3r38, 3r3b, 3r3c, 3r3d, 3r3f, 3tea - ArTE (mutant) + 4-hydroxyphenacyl CoA
- 3r36 - ArTE (mutant) + 4-hydroxybenzoate
- 3r3a - ArTE (mutant) + 4-hydroxybenzoate + CoA
- 3r34 - ArTE (mutant) + CoA
- 6fdg – SaTE – Staphylococcus aureus
- Palmitoyl protein thioesterase
- 1eh5 – bTE1 + Palmitate – bovine
- 1ei9 – bTE1
- 1exw – bTE1 + hexadecylsulfonyl fluoride
- 1pja – hTEII – human
- 3gro - hTEI
- Acyl-CoA thioesterase
- 2pzh - TE - Helicobacter pylori
- 3rd7 – TE – Mycobacterium avium
- 5t02 – TE (mutant) + CoA + GDP – Neisseria meningitis
- 5hz4, 5hwf, 5egk – SaTE (mutant) – Staphylococcus aureus
- 4egj – SaTE + CoA
- 1ivn, 5tic – EcTEI – Escherichia coli
- 1jrl – EcTEI (mutant)
- 1j00 – EcTEI + diethyl phosphono derivative
- 1v2g, 1u8u - EcTEI + octanoic acid
- 5tid, 5tie, 5tif - EcTEI (mutant) + octanoic acid
- 1tbu – TEI N terminal (peroximal) – yeast
- 1c8u – EcTEII
- 3u0a – TEII – Mycobacterium marinum
- 4qfw – YpTE II – Yersinia pestis
- 4r4u – YpTE II + CoA
- 3hlk – hTE2
- 3k2i – hTE4
- 2qq2 - hTE7 C terminal
- 2v1o – mTE7 hotdog domain – mouse
- 2q2b – mTE7 C terminal
- 3fo5 – hTE11 START domain
- 3b7k, 4moc – hTE12
- 4mob – hTE12 + ADP
- Acyl protein thioesterase
- 1fj2 – EcTEI
- 5sym – hTE 1 + inhibitor
- 5syn – hTE 2 + inhibitor
- Acyl-ACP thioesterase
- 2ess – TE – Bacterioides thetaiotaomicron
- 4gak – TE – Spirosoma linguale
- ACP-polyene thioesterase
- 4i4j – TE – Streptomyces globisporus
- Fluoroacetyl-CoA thioesterase
- Dihydroxynaphthoyl-CoA thioesterase
- 4k00 – TE – Synechocystis
- 4k02 – AtTE – Arabidopsis thaliana
- RedJ thioesterase
- 3qmv, 3qmw – TE – Streptomyces coelicolor
- Orf6 thioesterase
- 4i45 – TE – Photobacterium profundum
- thioesterase
- Ubiquitin thioesterase
- Ubiquitin thioesterase 2
- Ubiquitin thioesterase 3
- 2qiy – yUSP + USP-associated protein
- Ubiquitin thioesterase 4
- 2y6e – hUSP catalytic domain
- 3jyu – mUSP N terminal domain
- Ubiquitin thioesterase 5
- 2dag – hUSP UBA domain 1 - NMR
- 2dak – hUSP UBA domain 2 - NMR
- 2g43 – hUSP zinc finger USP domain
- 2g45 – hUSP zinc finger USP domain + Ub
- 3ihp – hUSP + Ub
- Ubiquitin thioesterase 7
- 2f1z, 5j7t – hUSP
- 1nb8, 4m5w, 4m5x – hUSP catalytic domain
- 2kvr – hUSP UBL domain - NMR
- 4pyz, 4wph, 4wpi – hUSP UBL domains 1+2
- 5fwi – hUSP catalytic + UBL domains 1+2
- 1yze, 2f1w – hUSP N terminal domain
- 2ylm – hUSP C terminal domain
- 2f1x, 2f1y, 2foj, 2foo, 2fop – hUSP N terminal domain/peptide
- 4zv3 – mUSP N terminal domain
- Ubiquitin thioesterase 7 complexes
- 1nbf – hUSP catalytic domain + Ub aldehyde
- 5jtj – hUSP catalytic domain + Ub
- 1yy6 – hUSP N terminal domain + EBNA1 peptide
- 2xxn – hUSP TRAF domain + VIRF-4 peptide
- 3mqr – hUSP TRAF domain + HDMX peptide
- 3mqs – hUSP TRAF domain + HDM2 peptide
- 4jjq – hUSP TRAF domain + E2 peptide
- 4kg9 – hUSP TRAF domain + MCM-BP peptide
- 4ysi – hUSP TRAF domain + peptide
- 4yoc – hUSP residues 560-1102 + DNA methyl transferase
- 5c6d – hUSP residues 561-881 + UHRF1
- 5c56 – hUSP residues 560-1102 + Ub E3 ligase Icp0444w
- Ubiquitin thioesterase 8
- 1whb – hUSP rhodanase domain - NMR
- 2a9u – hUSP N terminal domain
- 2gfo – hUSP catalytic domain
- Ubiquitin thioesterase 8 complexes
- 2gwf – hUSP rhodanase domain + ring finger protein 41 USP8 interaction domain
- 3mhh, 3m99, 4fip, 4fjc, 4f5k, 4fk5 – yUSP + SUS1 + SGF11 +SGF73
- 3mhs – yUSP + SUS1 + SGF11 +SGF73 + Ub
- 4zux – yUSP + SUS1 + SGF11 +SGF73 + Ub + Histones H3,2, H4, H2A, H2B + DNA
- 3n3k – hUSP catalytic domain + Ub
- Ubiquitin thioesterase 9
- 5vbd – hUSP 9x UBL domain
- Ubiquitin thioesterase 11
- 4mel – hUSP DUSP+UBL domains
- 4mem – rUSP DUSP+UBL domains - rat
- Ubiquitin thioesterase 12
- Ubiquitin thioesterase 13
- 2l80 – hUSP zinc finger domain - NMR
- 2lbc – hUSP UBA domain - NMR
- Ubiquitin thioesterase 14
- 1wgg – mUSP N terminal domain - NMR
- 2ayn – hUSP
- 2ayo – hUSP + Ub aldehyde
- 1wiv – AtUSP UBA domain - NMR
- 5gjq – hUSP in proteasome – Cryo EM
- Ubiquitin thioesterase 15
- 3lmn – hUSP DUSP domain
- 3ppa, 3pv1, 3t9l, 4a3o, 4a3p – hUSP DUSP+UBL domains
- 1w6v – hUSP DUSP domain - NMR
- 5jjw – hUSP catalytic domain + SART HAT domain
- 5ctr – hUSP DUSP+UBL domains + SART HAT domain
- Ubiquitin thioesterase 16
- 2i50 – hUSP zinc finger domain - NMR
- Ubiquitin thioesterase 18
- Ubiquitin thioesterase 21
- Ubiquitin thioesterase 25
- 1vdl – mUSP catalytic domain
- Ubiquitin thioesterase 28
- Ubiquitin thioesterase 33
- 2uzg – hUSP zinc finger domain - NMR
- Ubiquitin thioesterase 37
- 3ihr – hUSP (mutant)
- 3a7s – hUSP catalytic domain (mutant)
- 3u12 – hUSP pleckstrin domain
- Ubiquitin thioesterase 38
- Ubiquitin thioesterase 46
- 5cvm – hUSP + Ub
- 5cvn, 5cvo – hUSP + WD repeat-containing protein + Ub
- Ubiquitin thioesterase Cyld
- Ubiquitin thioesterase L1
- Ubiquitin thioesterase L3
- 1uch – hUSP-L3
- 1xd3 – hUSP-L3 + UBC
- 2we6 – PfUSP-L3 – Plasmodium falciparum
- 2wdt – PfUSP-L3 + Ub
- Ubiquitin thioesterase L5
- 3ris – hUSP catalytic domain
- 3rii, 3a7s – hUSP catalytic domain (mutant)
- 3tb3 – hUSP UCH domain (mutant)
- 3ihr – hUSP-L5 (mutant)
- 4uel – hUSP-L5 + polyUb + proteasomal Ub receptor Deubad domain
- 4uem – hUSP-L5 + proteasomal Ub receptor Deubad domain
- 4wlq – mUSP-L5 + proteasomal Ub receptor C terminal
- 4wlr – mUSP-L5 + polyUb + proteasomal Ub receptor C terminal
- 4uf5, 4wlp – hUSP-L5 + nuclear factor Deubad domain
- 4uf6 – hUSP-L5 + polyUb + nuclear factor Deubad domain
- Ubiquitin thioesterase ZranB1
- 3zrh – hUSP
- 4s1z – bUSP zinc finger + Ub
- Ubiquitin thioesterase OTUB1
- 3von – hUSP + E2
- 4ddg, 4ddi – hUSP + Ub
- 4i6l – hUSP (mutant) + Ub
- 4dhz, 4ldt – hUSP + E2 + Ub
- 4boq - hUSP OTU domain
- 4boz - hUSP OTU domain (mutant) + Ub
- 4bos - hUSP OTU domain (mutant) + Ub + OTUD2 peptide
- 4fjv - hUSP OTUB2 + Ub
- 4dhj – nUSP + E2 + Ub - nematode
- 4dhi – nUSP + E2
- 2kzr – mUSP UBX-like domain – NMR
- 4kdi, 4kdl – yUSP UBX-like domain + transitional endoplasmic reticulum ATPase
- 3by4, 3c0r - yUSP OTU domain + Ub
- Ubiquitin thioesterase
- 3znh – USP OTU domain + Ub – Crimean-Congo hemorrhagic fever virus
- Pseudomonas aeruginosa TE
- Thioesterase
- 5vpj – TE – Actinomadura verrucosospora
- 5dio, 5byu – TE – Legionella pneumophila
ReferencesReferences
- ↑ Cho S, Dawson G. Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. J Neurochem. 2000 Apr;74(4):1478-88. PMID:10737604
- ↑ Zhuang Z, Gartemann KH, Eichenlaub R, Dunaway-Mariano D. Characterization of the 4-hydroxybenzoyl-coenzyme A thioesterase from Arthrobacter sp. strain SU. Appl Environ Microbiol. 2003 May;69(5):2707-11. PMID:12732540
- ↑ Hunt MC, Alexson SE. The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog Lipid Res. 2002 Mar;41(2):99-130. PMID:11755680
- ↑ Weeks AM, Coyle SM, Jinek M, Doudna JA, Chang MC. Structural and Biochemical Studies of a Fluoroacetyl-CoA-Specific Thioesterase Reveal a Molecular Basis for Fluorine Selectivity. Biochemistry. 2010 Oct 11. PMID:20836570 doi:10.1021/bi101102u
- ↑ Jagannathan M, Nguyen T, Gallo D, Luthra N, Brown GW, Saridakis V, Frappier L. A role for USP7 in DNA replication. Mol Cell Biol. 2014 Jan;34(1):132-45. doi: 10.1128/MCB.00639-13. Epub 2013 Nov 4. PMID:24190967 doi:http://dx.doi.org/10.1128/MCB.00639-13
- ↑ Jahan AS, Lestra M, Swee LK, Fan Y, Lamers MM, Tafesse FG, Theile CS, Spooner E, Bruzzone R, Ploegh HL, Sanyal S. Usp12 stabilizes the T-cell receptor complex at the cell surface during signaling. Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E705-14. doi:, 10.1073/pnas.1521763113. Epub 2016 Jan 25. PMID:26811477 doi:http://dx.doi.org/10.1073/pnas.1521763113
- ↑ Malhotra S, Morcillo-Suarez C, Nurtdinov R, Rio J, Sarro E, Moreno M, Castillo J, Navarro A, Montalban X, Comabella M. Roles of the ubiquitin peptidase USP18 in multiple sclerosis and the response to interferon-beta treatment. Eur J Neurol. 2013 Oct;20(10):1390-7. doi: 10.1111/ene.12193. Epub 2013 May 22. PMID:23700969 doi:http://dx.doi.org/10.1111/ene.12193
- ↑ Huo Y, Khatri N, Hou Q, Gilbert J, Wang G, Man HY. The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination and trafficking. J Neurochem. 2015 Sep;134(6):1067-80. doi: 10.1111/jnc.13194. Epub 2015 Jul 16. PMID:26077708 doi:http://dx.doi.org/10.1111/jnc.13194
- ↑ Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, Hofmann SL, Peltonen L. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature. 1995 Aug 17;376(6541):584-7. PMID:7637805 doi:http://dx.doi.org/10.1038/376584a0
- ↑ van Diggelen OP, Thobois S, Tilikete C, Zabot MT, Keulemans JL, van Bunderen PA, Taschner PE, Losekoot M, Voznyi YV. Adult neuronal ceroid lipofuscinosis with palmitoyl-protein thioesterase deficiency: first adult-onset patients of a childhood disease. Ann Neurol. 2001 Aug;50(2):269-72. PMID:11506414
- ↑ Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S, Kroemer M. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure. 2006 Aug;14(8):1293-302. PMID:16905103 doi:10.1016/j.str.2006.06.012
proteopedia link