Catalytic domain of UCH37Catalytic domain of UCH37

Structural highlights

3a7s is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

UCHL5_HUMAN Protease that specifically cleaves 'Lys-48'-linked polyubiquitin chains. Deubiquitinating enzyme associated with the 19S regulatory subunit of the 26S proteasome. Putative regulatory component of the INO80 complex; however is inactive in the INO80 complex and is activated by a transient interaction of the INO80 complex with the proteasome via ADRM1.[1] [2]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Ubiquitin C-terminal hydrolases (UCHs) are one of five sub-families of de-ubiquitinating enzymes (DUBs) that hydrolyze the C-terminal peptide bond of ubiquitin. UCH37 (also called UCH-L5) is the only UCH family protease that interacts with the 19S proteasome regulatory complex and disassembles Lys48-linked poly-ubiquitin from the distal end of the chain. The structures of three UCHs, UCH-L1, UCH-L3, and YUH1, have been determined by X-ray crystallography. However, little is known about their physiological substrates. These enzymes do not hydrolyze large adducts of ubiquitin such as proteins. To identify and characterize the hydrolytic specificities of their substrates, the crystal structure of the UCH37 catalytic domain (UCH-domain) was determined and compared with that of the other UCHs. The overall folding patterns are similar in these UCHs. However, helix-3 is collapsed in UCH37 and the pattern of electrostatic potential on the surface of the putative substrate-binding site (P'-site) is different. Helix-3 comprises an edge of the P'-site. As a result, the P'-site is wider than that in other UCHs. These differences indicate that UCH37 can interact with larger adducts such as ubiquitin.

Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain.,Nishio K, Kim SW, Kawai K, Mizushima T, Yamane T, Hamazaki J, Murata S, Tanaka K, Morimoto Y Biochem Biophys Res Commun. 2009 Dec 18;390(3):855-60. Epub 2009 Oct 20. PMID:19836345[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK, Washburn MP, Conaway RC, Conaway JW, Cohen RE. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol. 2006 Sep;8(9):994-1002. Epub 2006 Aug 13. PMID:16906146 doi:ncb1460
  2. Yao T, Song L, Jin J, Cai Y, Takahashi H, Swanson SK, Washburn MP, Florens L, Conaway RC, Cohen RE, Conaway JW. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell. 2008 Sep 26;31(6):909-17. doi: 10.1016/j.molcel.2008.08.027. PMID:18922472 doi:10.1016/j.molcel.2008.08.027
  3. Nishio K, Kim SW, Kawai K, Mizushima T, Yamane T, Hamazaki J, Murata S, Tanaka K, Morimoto Y. Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem Biophys Res Commun. 2009 Dec 18;390(3):855-60. Epub 2009 Oct 20. PMID:19836345 doi:10.1016/j.bbrc.2009.10.062

3a7s, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA