Crystal structure of the F36A mutant of the fluoroacetyl-CoA-specific thioesterase FlKCrystal structure of the F36A mutant of the fluoroacetyl-CoA-specific thioesterase FlK

Structural highlights

3p3f is a 6 chain structure with sequence from Streptomyces cattleya. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FLK_STRCT Hydrolyzes fluoroacetyl-CoA before it can react with citrate synthase, and thus confers fluoroacetate resistance. Can not use acetyl-CoA as substrate.[1] [2]

Publication Abstract from PubMed

We have initiated a broad-based program aimed at understanding the molecular basis of fluorine specificity in enzymatic systems, and in this context, we report crystallographic and biochemical studies on a fluoroacetyl-coenzyme A (CoA) specific thioesterase (FlK) from Streptomyces cattleya. Our data establish that FlK is competent to protect its host from fluoroacetate toxicity in vivo and demonstrate a 10(6)-fold discrimination between fluoroacetyl-CoA (k(cat)/K(M) = 5 x 10(7) M(-1) s(-1)) and acetyl-CoA (k(cat)/K(M) = 30 M(-1) s(-1)) based on a single fluorine substitution that originates from differences in both substrate reactivity and binding. We show that Thr 42, Glu 50, and His 76 are key catalytic residues and identify several factors that influence substrate selectivity. We propose that FlK minimizes interaction with the thioester carbonyl, leading to selection against acetyl-CoA binding that can be recovered in part by new C horizontal lineO interactions in the T42S and T42C mutants. We hypothesize that the loss of these interactions is compensated by the entropic driving force for fluorinated substrate binding in a hydrophobic binding pocket created by a lid structure, containing Val 23, Leu 26, Phe 33, and Phe 36, that is not found in other structurally characterized members of this superfamily. We further suggest that water plays a critical role in fluorine specificity based on biochemical and structural studies focused on the unique Phe 36 "gate" residue, which functions to exclude water from the active site. Taken together, the findings from these studies offer molecular insights into organofluorine recognition and design of fluorine-specific enzymes.

Structural and Biochemical Studies of a Fluoroacetyl-CoA-Specific Thioesterase Reveal a Molecular Basis for Fluorine Selectivity.,Weeks AM, Coyle SM, Jinek M, Doudna JA, Chang MC Biochemistry. 2010 Oct 11. PMID:20836570[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Huang F, Haydock SF, Spiteller D, Mironenko T, Li TL, O'Hagan D, Leadlay PF, Spencer JB. The gene cluster for fluorometabolite biosynthesis in Streptomyces cattleya: a thioesterase confers resistance to fluoroacetyl-coenzyme A. Chem Biol. 2006 May;13(5):475-84. PMID:16720268 doi:http://dx.doi.org/S1074-5521(06)00084-6
  2. Weeks AM, Coyle SM, Jinek M, Doudna JA, Chang MC. Structural and Biochemical Studies of a Fluoroacetyl-CoA-Specific Thioesterase Reveal a Molecular Basis for Fluorine Selectivity. Biochemistry. 2010 Oct 11. PMID:20836570 doi:10.1021/bi101102u
  3. Weeks AM, Coyle SM, Jinek M, Doudna JA, Chang MC. Structural and Biochemical Studies of a Fluoroacetyl-CoA-Specific Thioesterase Reveal a Molecular Basis for Fluorine Selectivity. Biochemistry. 2010 Oct 11. PMID:20836570 doi:10.1021/bi101102u

3p3f, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA