FunctionThioesterase (TE) catalyzes the break of an ester bond to produce acid and alcohol at a thiol group. TEs are substrate-specific.
- Palmitoyl protein TE removes fatty acids like palmitate from modified cysteine residues during lysosomal degradation[1]. For details see Palmitoyl protein thioesterase.
- 4-hydroxybenzoyl-CoA TE converts 4-hydroxybenzoyl-CoA to 4-hydroxybenzoate and CoA[2].
- Acyl-CoA TE hydrolyzes acyl-CoA to the fatty acid and CoA and is involved in lipid metabolism[3]. See also YbgC.
- Fluoroacetyl-CoA TE from Streptomyces cattleya hydrolyzes fluoroacetyl-CoA thus preventing it from being metabolized to the lethal 4-hydroxy-trans-aconitate[4].
- Ubiquitin TE or ubiquitin carboxyl-terminal hydrolase (USP) removes conjugated ubiquitin (UB) from proteins thus regulating protein level by preventing their degradation. USP hydrolyze the peptide bond at the C-terminal glycine of ubiquitin. The USPs are involved in the processing of poly-UB precursors and of ubiquitinated proteins[5]. USP contains catalytic domain surrounded several domains: Ub-like (UBL); Ub-associated (UBA); zinc finger-Ub-specific protease domain (UBP or DUSP); TRF homology domain.
- USP-L1, USP25 hydrolyze C-terminal adducts of UB.
- USP-L3 hydrolyze C-terminal adducts of UB and NEDD8.
- USP5 cleaves multiubiquitin polymers.
- USP6 has ATP-independent isopeptidase activity.
- USP7, USP4, USP13, USP15 deubiquitinate several proteins.
- USP8 removes conjugated ubiquitin from proteins thus preventing protein degradation. USP8 is involved in cell proliferation and is active in the M phase of proliferation.
- USP11, USP14 are proteasome-associated.
- USP16, USP21 deubiquitinate histone H2A.
- USP28 deubiquitinates proteins of the DNA damage pathway.
- USP33 regulates centrosome duplication.
- USP37 deubiquitinates cyclin A.
Structural highlights[6]
| |
3D structures of thioesterase3D structures of thioesterase
Updated on 11-September-2016
{"openlevels":0}
- Maristoyl-ACP-specific thioesterase
- 1tht – TE – Vibrio harveyi
- 4-hydroxybenzoyl-CoA thioesterase
- 1bvq – PsTE – Pseudomonas
- 1lo7 – PsTE + 4-hydroxyphenyl CoA
- 1lo9 - PsTE (mutant) + 4-hydroxybenzoyl CoA
- 1lo8 - PsTE + 4-hydroxybenzyl CoA
- 1q4s - ArTE + 4-hydroxybenzoate – 'Arthrobacter'
- 1q4t - ArTE + 4-hydroxyphenyl CoA
- 1q4u - ArTE + 4-hydroxybenzyl CoA
- 3r32, 3r35, 3r37, 3r38, 3r3b, 3r3c, 3r3d, 3r3f, 3tea - ArTE (mutant) + 4-hydroxyphenacyl CoA
- 3r36 - ArTE (mutant) + 4-hydroxybenzoate
- 3r3a - ArTE (mutant) + 4-hydroxybenzoate + CoA
- 3r34 - ArTE (mutant) + CoA
- Palmitoyl protein thioesterase
- 1eh5 – bTE1 + Palmitate – bovine
- 1ei9 – bTE1
- 1exw – bTE1 + hexadecylsulfonyl fluoride
- 1pja – hTEII – human
- 3gro - hTEI
- Acyl-CoA thioesterase
- 1c8u – EcTEII – Escherichia coli
- 1ivn – EcTEI
- 1jrl – EcTEI (mutant)
- 1j00 – EcTEI + diethyl phosphono derivative
- 1v2g, 1u8u - EcTEI + octanoic acid
- 2v1o – mTE7 hotdog domain – mouse
- 2q2b – mTE7 C terminal
- 2pzh - TE - Helicobacter pylori
- 3hlk – hTE2
- 3k2i – hTE4
- 2qq2 - hTE7 C terminal
- 3fo5 – hTE11 START domain
- 3b7k, 4moc – hTE12
- 4mob – hTE12 + ADP
- 3rd7 – TE – Mycobacterium avium
- 3u0a – TEII – Mycobacterium marinum
- 1tbu – TE N terminal (peroximal) – yeast
- 4qfw – YpTE II – Yersinia pestis
- 4r4u – YpTE II + CoA
- Acyl protein thioesterase
- Acyl-ACP thioesterase
- 2ess – TE – Bacterioides thetaiotaomicron
- 4gak – TE – Spirosoma linguale
- 4gwh – YpTE
- ACP-polyene thioesterase
- 4i4j – TE – Streptomyces globisporus
- Fluoroacetyl-CoA thioesterase
- Dihydroxynaphthoyl-CoA thioesterase
- 4k00 – TE – Synechocystis
- 4k02 – AtTE – Arabidopsis thaliana
- RedJ thioesterase
- 3qmv, 3qmw – TE – Streptomyces coelicolor
- Orf6 thioesterase
- 4i45 – TE – Photobacterium profundum
- thioesterase
- Ubiquitin thioesterase
- Ubiquitin thioesterase 2
- Ubiquitin thioesterase 3
- 2qiy – yUSP + USP-associated protein – yeast
- Ubiquitin thioesterase 4
- 2y6e – hUSP catalytic domain
- 3jyu – mUSP N terminal domain - mouse
- Ubiquitin thioesterase 5
- 2dag – hUSP UBA domain 1 - NMR
- 2dak – hUSP UBA domain 2 - NMR
- 2g43 – hUSP zinc finger USP domain
- 2g45 – hUSP zinc finger USP domain + Ub
- 3ihp – hUSP + Ub
- Ubiquitin thioesterase 7
- Ubiquitin thioesterase 7 complexes
- 1nbf – hUSP catalytic domain + Ub aldehyde
- 1yy6 – hUSP N terminal domain + EBNA1 peptide
- 2xxn – hUSP TRAF domain + VIRF-4 peptide
- 3mqr – hUSP TRAF domain + HDMX peptide
- 3mqs – hUSP TRAF domain + HDM2 peptide
- 4jjq – hUSP TRAF domain + E2 peptide
- 4kg9 – hUSP TRAF domain + MCM-BP peptide
- 4yoc – hUSP residues 560-1102 + DNA methyl transferase
- Ubiquitin thioesterase 8
- 1whb – hUSP rhodanase domain - NMR
- 2a9u – hUSP N terminal domain
- 2gfo – hUSP catalytic domain
- Ubiquitin thioesterase 8 complexes
- 2gwf – hUSP rhodanase domain + ring finger protein 41 USP8 interaction domain
- 3mhh, 3m99, 4fip, 4fjc, 4f5k, 4fk5 – yUSP + SUS1 + SGF11 +SGF73
- 3mhs – yUSP + SUS1 + SGF11 +SGF73 + Ub
- 3n3k – hUSP catalytic domain + Ub
- Ubiquitin thioesterase 11
- 4mel – hUSP DUSP+UBL domains
- 4mem – rUSP DUSP+UBL domains - rat
- Ubiquitin thioesterase 13
- 2l80 – hUSP zinc finger domain - NMR
- 2lbc – hUSP UBA domain - NMR
- Ubiquitin thioesterase 14
- 1wgg – mUSP N terminal domain - NMR
- 2ayn – hUSP
- 2ayo – hUSP + Ub aldehyde
- 1wiv – AtUSP UBA domain - NMR
- Ubiquitin thioesterase 15
- Ubiquitin thioesterase 16
- 2i50 – hUSP zinc finger domain - NMR
- Ubiquitin thioesterase 21
- Ubiquitin thioesterase 25
- 1vdl – mUSP catalytic domain
- Ubiquitin thioesterase 28
- 2lva – hUSP N terminal - NMR
- Ubiquitin thioesterase 33
- 2uzg – hUSP zinc finger domain - NMR
- Ubiquitin thioesterase 37
- 3ihr – hUSP (mutant)
- 3a7s – hUSP catalytic domain (mutant)
- 3u12 – hUSP pleckstrin domain
- Ubiquitin thioesterase 38
- Ubiquitin thioesterase Cyld
- Ubiquitin thioesterase L1
- Ubiquitin thioesterase L3
- 1uch – hUSP-L3
- 1xd3 – hUSP-L3 + UBC
- 2we6 – PfUSP-L3 – Plasmodium falciparum
- 2wdt – PfUSP-L3 + Ub
- Ubiquitin thioesterase L5
- 3ris – hUSP catalytic domain
- 3rii, 3a7s – hUSP catalytic domain (mutant)
- 3tb3 – hUSP UCH domain (mutant)
- 3ihr – hUSP-L5 (mutant)
- 4uel – hUSP-L5 + polyUb + proteasomal Ub receptor Deubad domain
- 4uem – hUSP-L5 + proteasomal Ub receptor Deubad domain
- 4wlq – mUSP-L5 + proteasomal Ub receptor C terminal
- 4wlr – mUSP-L5 + polyUb + proteasomal Ub receptor C terminal
- 4uf5, 4wlp – hUSP-L5 + nuclear factor Deubad domain
- 4uf6 – hUSP-L5 + polyUb + nuclear factor Deubad domain
- Ubiquitin thioesterase ZranB1
- 3zrh – hUSP
- 4s1z – bUSP zinc finger + Ub
- Ubiquitin thioesterase OTUB1
- 3von – hUSP + E2
- 4ddg, 4ddi – hUSP + Ub
- 4i6l – hUSP (mutant) + Ub
- 4dhz, 4ldt – hUSP + E2 + Ub
- 4boq - hUSP OTU domain
- 4boz - hUSP OTU domain (mutant) + Ub
- 4bos - hUSP OTU domain (mutant) + Ub + OTUD2 peptide
- 4fjv - hUSP OTUB2 + Ub
- 4dhj – nUSP + E2 + Ub - nematode
- 4dhi – nUSP + E2
- 2kzr – mUSP UBX-like domain – NMR
- 4kdi, 4kdl – yUSP UBX-like domain + transitional endoplasmic reticulum ATPase
- 3by4, 3c0r - yUSP OTU domain + Ub
- Ubiquitin thioesterase
- 3znh – USP OTU domain + Ub – Crimean-Congo hemorrhagic fever virus
- Pseudomonas aeruginosa TE
ReferencesReferences
- ↑ Cho S, Dawson G. Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. J Neurochem. 2000 Apr;74(4):1478-88. PMID:10737604
- ↑ Zhuang Z, Gartemann KH, Eichenlaub R, Dunaway-Mariano D. Characterization of the 4-hydroxybenzoyl-coenzyme A thioesterase from Arthrobacter sp. strain SU. Appl Environ Microbiol. 2003 May;69(5):2707-11. PMID:12732540
- ↑ Hunt MC, Alexson SE. The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog Lipid Res. 2002 Mar;41(2):99-130. PMID:11755680
- ↑ Weeks AM, Coyle SM, Jinek M, Doudna JA, Chang MC. Structural and Biochemical Studies of a Fluoroacetyl-CoA-Specific Thioesterase Reveal a Molecular Basis for Fluorine Selectivity. Biochemistry. 2010 Oct 11. PMID:20836570 doi:10.1021/bi101102u
- ↑ Jagannathan M, Nguyen T, Gallo D, Luthra N, Brown GW, Saridakis V, Frappier L. A role for USP7 in DNA replication. Mol Cell Biol. 2014 Jan;34(1):132-45. doi: 10.1128/MCB.00639-13. Epub 2013 Nov 4. PMID:24190967 doi:http://dx.doi.org/10.1128/MCB.00639-13
- ↑ Verschueren KH, Kingma J, Rozeboom HJ, Kalk KH, Janssen DB, Dijkstra BW. Crystallographic and fluorescence studies of the interaction of haloalkane dehalogenase with halide ions. Studies with halide compounds reveal a halide binding site in the active site. Biochemistry. 1993 Sep 7;32(35):9031-7. PMID:8369276
proteopedia link