ATPase
ATPase is an enzyme which catalyzes the breakdown of ATP into ADP and a phosphate ion. This dephosphorylation releases energy which the enzyme uses to drive other reactions. ATPAse types include:
ATPase domains include metal-binding domain (MBD) and nucleotide-binding domain (NBD). For more details see:
Structural and functional insights into a dodecameric molecular machine – The RuvBL1/RuvBL2 complex (ATPase)[1] (RuvB-like 1; 2c9o [2]; colored magenta) and its homolog RuvBL2 are evolutionarily highly conserved AAA+ ATPases essential for many cellular activities. They play an important role in chromatin remodeling, transcriptional regulation and DNA damage repair. RuvBL1 and RuvBL2 are overexpressed in different types of cancer and interact with major oncogenic factors, such as β-catenin and c-myc regulating their function. Since the full-length complex did not crystallize, were generated: (R1∆DII) and (R2∆DII). Crystals of the selenomethionine derivative of the R1∆DII/R2∆DII complex diffracted to 3 Å resolution and led to the determination of the three-dimensional structure of the complex. The structure reveals a (the RuvBL1 and the RuvBL2 are colored darkmagenta and cyan, respectively) bound to ADP/ATP (click on or, alternatively on to see protein/nucleotide interactions). The two heterohexamers interact with each other via the retained part of domain II, which is however poorly visible in the electron density maps, probably because the complex was not crystallized in a single conformational state. This is also hinted by evidence that in the RuvBL1 monomers, ATP was partly hydrolyzed to ADP. The dodecameric quaternary structure of the R1ΔDII/R2ΔDII complex observed in the crystal structure was confirmed by small-angle X-ray scattering analysis. RuvBL1 and RuvBL2 share . Due to the low data resolution, and even though the crystal structure could be solved by molecular replacement using a truncated RuvBL1 model, the use of a selenomethionine derivative was essential to elucidate the complex composition, since only one methionine residue is conserved out of 11 in R1ΔDII and 12 in R2ΔDII. Interestingly, truncation of domain II led to a substantial increase in ATP consumption of RuvBL1, RuvBL2 and their complex. In addition, we present evidence that DNA unwinding of the human RuvBL proteins can be auto-inhibited by domain II, which is not present in the homologous bacterial helicase RuvB. The alternation of charges in the central channel of the dodecamer shown below, combined with the diameter of the channel (ranging between 17 and 21 Å) suggests interactions with single-stranded nucleic acids. ![]() Our data give new insights into the molecular arrangement of RuvBL1 and RuvBL2 and strongly suggest that in vivo activities of these highly interesting therapeutic drug targets are regulated by cofactors inducing conformational changes via domain II in order to modulate the enzyme complex into its active state.
|
|
3D Structures of ATPase3D Structures of ATPase
Updated on 25-August-2014
F-ATPaseF-ATPase
F1F0 ATPase α subunit
2jmx - bF1-ATPS+subunit O
2r9v - F1-ATPS – Thermotoga maritima
F1F0 ATPase β subunit
1b9u – EcF1-ATPS membrane domain – Escherichia coli -NMR
1l2p – EcF1-ATPS dimerization domain
2khk - EcF1-ATPS fragment – NMR
1pyv - F1-ATPS – NMR – tobacco
F1F0 ATPase γ subunit
1wu0 – BsATPS – NMR
1a91, 1c0v, 1aty, 1c99 - EcF1-ATPS – NMR
2wgm, 1yce – F0-ATPS – Ilyobacter tartaricus
2x2v – F0-ATPS – Bacillus pseudofirmus
F1F0 ATPase δ subunit
1abv – EcF1-ATPS N terminal – NMR
F1F0 ATPase ε subunit
2rq6, 2rq7 - F1-ATPS – Thermosynechococcus elongatus
1abv, 1aqt – EcF1-ATPS (mutant)
1bsh, 1bsn – EcF1-ATPS – NMR
2e5t, 2e5u – BsF1-ATPS C terminal – NMR
2e5y – BsF1-ATPS
F1F0 ATPase α, β subunits
1sky – BsF1-ATPS – Bacillus sp. Ps3
F1F0 ATPase α,γ subunits
1c17 – EcF1-ATPS – NMR
F1F0 ATPase α, δ subunits
2a7u – EcF1-ATPS N termini – NMR
F1F0 ATPase β, δ subunits
2cly – bF1-ATPS + ATPS coupling factor
F1F0 ATPase γ, ε subunits
1fs0 – EcF1-ATPS
F1F0 ATPase α, β, γ subunits
1ohh, 2jiz – bF1-ATPS+ IF1 inhibitor – bovine
1e1q, 2w6e, 2w6f, 2w6g, 2w6h, 2w6i, 2w6j - bF1-ATPS
1e1r - bF1-ATPS+Mg+ADP+AlF4
1w0j, 1w0k - bF1-ATPS+BeF3
1nbm - bF1-ATPS+nitrobenzofurazan
1mab, 2f43 - F1-ATPS – rat
F1F0 ATPase α,β,γ,δ subunits
1qo1 - yF1-ATPS + protein 9
F1F0 ATPase α,β,γ,ε subunits
1jnv - EcF1-ATPS
3oaa – EcF1-ATPS (mutant)
2qe7 – F1-ATPS – Bacillus
F1F0 ATPase α, β, γ, δ, ε subunits
4asu, 2jdi, 2jj1, 2jj2 - bF1-ATPS
2v7q, 1e79, 2ck3 - bF1-ATPS+inhibitor
2xnd, 2xok - bF1-ATPS+ATPS lipid-binding protein
2wpd, 2wss - yF1-ATPS+subunit 9+Mg+ADP+ATP
3oe7, 3oee, 3oeh, 3ofn - yF1-ATPS (mutant)
3fks, 3zry, 2hld - yF1-ATPS
2zia - bF1-ATPS+inhibitor protein
3j0j – TtATPS α,β,γ,δ,ε,ζ - Cryo EM
1e79 - bF1-ATPS
F1F0 ATPase α,β,γ,δ,ε,9,B,D,6,O subunits
4b2q – yATPase subunits α,β,γ,δ,ε +9,B,D,6,O – Cryo EM
1bmf - bF1-ATPS
3dze – bF1-ATPS subunit S
1cow - bF1-ATPS+aurovertin B
4f4s – yATPase subunit 9 + oligomycin
V-ATPaseV-ATPase
V-ATPase subunit A
3i4l - PhATPS subunit A+AMPPNP
3mfy, 3m4y, 3nd8, 3nd9, 3p20, 3qg1, 3qia, 3qjy, 3sdz, 3se0 - PhATPS subunit A
mutant)
3i72, 3i73, 3ikj - TtATPS subunit A (mutant)
V-ATPase subunit B
2c61 - MmATPS subunit B – Methanosarcina mazei
2rkw, 3b2q, 3ssa, 3tgw, 3tiv - MmATPS subunit B (mutant)
3dsr - MmATPS subunit B+ADP
3eiu - MmATPS subunit B+ATP
V-ATPase subunit C
1u7l, 3u2f, 3u2y, 3u32, 3ud0 - yATPS subunit C
3v3c - ATPS subunit C - pea
1ijp, 1l6t – EcF1-ATPS subunit C (mutant) – Escherichia coli - NMR
1r5z, 1v9m - TtATPS subunit C – Thermus thermophilus
3lg8 - MtATPS subunit C C-terminal
2w5j - sATPS subunit C - spinach
2wie, 2xqs, 2xqt, 2xqu - ATPS subunit C – Arthrospira platensis
3zk1, 3zk2 - ATPS subunit C – Fusobacterium nucleatum
V-ATPase subunit E
2kz9 – yATPase subunit E
2dm9, 2dma, 4dt0 - PhATPS subunit E – Pyrococcus horikoshii
2kk7 - MjATPS subunit E – Methanocaldococcus jannaschii
3v6i – TtATPS subunit E + VAPC
V-ATPase subunit F
2qai - ATPS subunit F – Pyrococcus furiosus
2i4r - ATPS subunit F – Archaeoglobus fulgidus
2ov6 - MmATPS subunit F - NMR
2d00 - TtATPS subunit F
4ix9 – yATP subunit F (mutant)
V-ATPase subunit G
2k88 - yATPS subunit G - NMR
V-ATPase subunit H
1ho8 – yATPS subunit H – yeast
V-ATPase subunit K
2bl2, 2cyd - ATPS subunit K – Enterococcus hirae
V-ATPase subunit I
3rrk – ATPS subunit I N terminal – Meiothermus ruber
4dl0, 4efa - yATPase subunits C,G,E
3w3a - yATPS subunit A,B,D,F
3a5c, 3a5d - TtATPS subunit A,B,D,F
3gqb - TtATPS subunit A (mutant),B (mutant)
3k5b - TtATPS subunit E (mutant)+C
P-ATPaseP-ATPase
Cu transporting ATPase
2kmv, 2kmx, 2arf – hATPase NBD – human – NMR
2kij - hATPase actuator domain – NMR
1yjr, 1yjt, 1yju, 1yjv - hATPase (mutant) 6th soluble domain – NMR
1y3j, 1y3k - hATPase 5th soluble domain – NMR
1s6o, 1s6u - hATPase 2nd soluble domain – NMR
1q8l - hATPase 2nd MBD – NMR
1aw0, 2aw0 - hATPase 4th MBD – NMR
1kvi, 1kvj - hATPase 1st MBD – NMR
3dxs - AtATPase MBD – Arabidopsis thaliana
3voy - AfATPase – Archaeoglobus fulgidus – CryoEM
3skx, 3sky - AfATPase NBD
2k1r - hATPase MBD+ ATOX1 – NMR
2rop, 2g9o, 2ga7 - hATPase MBD – NMR
2rml - BsATPase N-terminal – Bacillus subtilis – NMR
2gcf - sATPase N-terminal - Synechocystis – NMR
4a48 - sATPase
2iye - SsATPase catalytic domain – Sulfolobus solfataricus
2yj3 - SsATPase catalytic domain (mutant)
2yj4, 2yj5, 2yj6 - SsATPase catalytic domain (mutant) + nucleotide
1fvq, 1fvs - hATPase – NMR
3cjk – hATPase + Cu transporting protein ATX1
3rfu – ATPase – Legionella pneumophila
4f2f - ATPase metal-binding domain – Streptococcus pneumonia
3j08, 3j09 - AfATPase
3a1c – AfATPase + AMPPCP
3a1d - AfATPase + ADP-Mg
3a1e - AfATPase (mutant) + AMPPCP
Na/K transporting ATPase
3a3y - SaATPase+K+ouabain – Squalus acanthias
3kdp, 3b8e – pATPase – pig
3n23 – pATPase + ouabain
3b8e - pATPase a+BeF3
2hc8 –AfATPase CopA A domain
2b8e - AfATPase CopA NBD
2xze - SaATPase
1mo8, 1mo7 - ATPase α-1 – rat
1q3i - pATPase NBD
3n2f - pATPase subunits α,β,γ
2zxe - ATPase subunits α,β + phospholemman-like protein – spiny dogfish
Ca+2 transporting ATPase
3fgo - rATPase+CPA+AMPPCP – rabbit
3b9r, 1xp5 - rATPase+AlF4
1wpg - rATPase+MgF4
3w5b - rATPase+Mg
3w5c, 3w5d, 1iwo - rATPase
2zbe, 3b9b – rATPase+BeF3
2zbf - rATPase+BeF3+TG
2zbg - rATPase+AlF4+TG
2zbd, 3ar8 - rATPase+AlF4+nucleotide+Ca
3ar9 - rATPase+BeF3+nucleotide
2dqs, 3ar2, 1vfp - rATPase+AMPPCP
2c88, 2c8k, 3ar4, 3ar3, 3ar5, 3ar7 - rATPase+nucleotide+TG
2ear, 2c8l - rATPase+TG
2agv - rATPase+TG+BHQ
2eas - rATPase+CPA
2eat - rATPase+CPA+GT
3ar6 - rATPase+TNP-ADP+GT
2eau - rATPase+CPA+curcumin
3ba6 - rATPase phosphoenzyme intermediate
3fpb - rATPase+ATP+cyclopiazonic acid
3fps, 2oa0 - rATPase+ADP+cyclopiazonic acid
2o9j - rATPase+MgF4+cyclopiazonic acid
1kju, 3n5k - rATPase E2 state
2c9m - rATPase Ca2E1 state
1t5s, 3n8g - rATPase Ca2E1 state+AMPPCP
1t5t - rATPase Ca2E1 state+ADP+AlF4
1su4 - rATPase +2Ca2
2by4, 2yfy, 3nal, 3nam, 3nan - rATPase HNE2 state+thapsigargin derivative
Zn+2 transporting ATPase
2ofg, 2ofh - sATPase N-terminal – NMR
K+ transporting ATPase
2a00, 2a29 - EcATPase NBD of KdpB+AMPPNP– Escherichia coli – NMR
1svj, 1u7q - EcATPase NBD of KdpB – NMR
2ynr – pATPase – Cryo EM
As+ transporting ATPase
1ii0, 1f48 - EcATPase
1ihu – EcATPase+Mg+ADP+AlF3
1ii9 - EcATPase
3h84, 3idq, 3a36, 3a37 - yATPase GET3 – yeast
3sja, 3sjb, 3sjc, 3sjd, 3zs8, 3zs9, 3b2e, 3vlc - yATPase GET3 + GET1 cystolic domain
3ibg - ATPase GET3 – Aspergillus fumigatus
H+ transporting ATPase
3b8c - AtATPase C terminal truncated
1mhs - ATPase – Neurospora crassa
Na+ transporting ATPase
2db4, 3aou - EhATPase subunit K – Enterococcus hirae
3aon - EhATPase subunits D,G
3vr2 - EhATPase subunits A,B
3vr4, 3vr5 - EhATPase subunits A,B,D,G
3vr3 - EhATPase subunits A,B + AMPPNP
3vr6 - EhATPase subunits A,B,D,G + AMPPNP
1yce - ATPase rotor ring – Ilyobacter tartaricus
H/K transporting ATPase
1iwc, 1iwf - pATPase NBD
3ixz - pATPase a+AlF4
2xzb – pATPase subunits α, β
Mg+2 transporting ATPase
3gwi – EcATPase P-1 NBD
Arg/ornithine transporting ATPase
3md0 – MtATPase+GDP – Mycobacterium tuberculosis
1kmh - ATPase alpha subunit+tentoxin – spinach
1h8e – cATPase+ADP+AlF4+ADP+SO4 - cow
1h8h - cATPase+ AMPPNP
1efr - cATPase+efrapeptin
3fks – ATPase – yeast
3ea0 – ATPase ParA, fragment – Chlorobium tepidum
2qen – ATPase (mutant) Walker-type – Pyrococcus abyssi
3cf0, 3cf1, 3cf3 – mATPase NBD+ADP – mouse
3cf2 - mATPase NBD+ADP+AMP-PNP
2r31, 2p4x – PdATPase ATP12 – Paracoccus denitrificans
2zd2 – PdATPase (mutant) ATP12
1d8s – EcATPase F1
1vdz – PhATPase subunit A – Pyrococcus horikoshii
RNA-dependent ATPaseRNA-dependent ATPase
3eaq, 3i31, 3i32 – TtATPase fragment
3mwj – TtATPase N-terminal (mutant)
3mwk, 3nbf – TtATPase N-terminal + 8-oxo-AMP
3mwl - TtATPase N-terminal (mutant) + 8-oxoadenine
3nej - TtATPase reca-like domain (mutant)
Proteasome-associated ATPaseProteasome-associated ATPase
3fp9, 3m9b, 3m9h – MtATPase intern domain
3m91, 3m9d - MtATPase coiled coil domain + protein PUP
3kw6 – hATPase 5
Transitional endoplasmic reticulum ATPaseTransitional endoplasmic reticulum ATPase
3hu1, 3hu2, 3hu3 – hTer-ATPase + ATPGS
3qc8, 3qq8, 3qwz - hTer-ATPase N terminal + FAS-associated factor 1
3qq7 - hTer-ATPase N terminal
3tiw - hTer-ATPase N terminal + E3 ubiquitin-protein ligase peptide
LAO/AO transport system ATPaseLAO/AO transport system ATPase
3nxs – ATPase – Mycobacterium smegmatis
DNA double-strand repair ATPase (Rad50)DNA double-strand repair ATPase (Rad50)
3aux – MjRad50 – Methanocaldococcus jannaschii
3auy - MjRad50 + ADP
3av0 - MjRad50 + ATP
3qg5 – Rad50 NBD + MRE11 – Thermotoga maritima
3qkr, 3qks, 3qf7 - PfRad50 NBD + MRE11 – Pyrococcus furiosus
3qkt - PfRad50 NBD + AMPPNP
3qku - PfRad50 NBD + AMPPNP + MRE11
MipZ ATPaseMipZ ATPase
2xit, 2xj4 – CcMipZ – Caulobacter crescentus
2xj9 – CcMipZ (mutant)
3nbx – EcATPase Rava + ADP
FlaI ATPaseFlaI ATPase
ReferencesReferences
- ↑ Gorynia S, Bandeiras TM, Pinho FG, McVey CE, Vonrhein C, Round A, Svergun DI, Donner P, Matias PM, Carrondo MA. Structural and functional insights into a dodecameric molecular machine - The RuvBL1/RuvBL2 complex. J Struct Biol. 2011 Sep 10. PMID:21933716 doi:10.1016/j.jsb.2011.09.001
- ↑ Matias PM, Gorynia S, Donner P, Carrondo MA. Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem. 2006 Dec 15;281(50):38918-29. Epub 2006 Oct 23. PMID:17060327 doi:10.1074/jbc.M605625200