1svj

From Proteopedia
Jump to navigation Jump to search

The solution structure of the nucleotide binding domain of KdpBThe solution structure of the nucleotide binding domain of KdpB

Structural highlights

1svj is a 1 chain structure with sequence from Escherichia coli. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KDPB_ECOLI Part of the high-affinity ATP-driven potassium transport (or Kdp) system, which catalyzes the hydrolysis of ATP coupled with the electrogenic transport of potassium into the cytoplasm (PubMed:2849541, PubMed:8499455, PubMed:23930894). This subunit is responsible for energy coupling to the transport system (PubMed:16354672).[1] [2] [3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

P-type ATPases are involved in the active transport of ions across biological membranes. The KdpFABC complex (P-type ATPase) of Escherichia coli is a high-affinity K+ uptake system that operates only when the cell experiences osmotic stress or K+ limitation. Here, we present the solution structure of the nucleotide binding domain of KdpB (backbone RMSD 0.17 A) and a model of the AMP-PNP binding mode based on intermolecular distance restraints. The calculated AMP-PNP binding mode shows the purine ring of the nucleotide to be "clipped" into the binding pocket via a pi-pi-interaction to F377 on one side and a cation-pi-interaction to K395 on the other. This binding mechanism seems to be conserved in all P-type ATPases, except the heavy metal transporting ATPases (type IB). Thus, we conclude that the Kdp-ATPase (currently type IA) is misgrouped and has more similarities to type III ATPases. The KdpB N-domain is the smallest and simplest known for a P-type ATPase, and represents a minimal example of this functional unit. No evidence of significant conformational changes was observed within the N-domain upon nucleotide binding, thus ruling out a role for ATP-induced conformational changes in the reaction cycle.

Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes.,Haupt M, Bramkamp M, Coles M, Altendorf K, Kessler H J Mol Biol. 2004 Oct 1;342(5):1547-58. PMID:15364580[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Haupt M, Bramkamp M, Heller M, Coles M, Deckers-Hebestreit G, Herkenhoff-Hesselmann B, Altendorf K, Kessler H. The holo-form of the nucleotide binding domain of the KdpFABC complex from Escherichia coli reveals a new binding mode. J Biol Chem. 2006 Apr 7;281(14):9641-9. Epub 2005 Dec 14. PMID:16354672 doi:http://dx.doi.org/10.1074/jbc.M508290200
  2. Damnjanovic B, Weber A, Potschies M, Greie JC, Apell HJ. Mechanistic analysis of the pump cycle of the KdpFABC P-type ATPase. Biochemistry. 2013 Aug 20;52(33):5563-76. doi: 10.1021/bi400729e. Epub 2013 Aug, 9. PMID:23930894 doi:http://dx.doi.org/10.1021/bi400729e
  3. Siebers A, Altendorf K. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem. 1988 Dec 1;178(1):131-40. PMID:2849541
  4. Kollmann R, Altendorf K. ATP-driven potassium transport in right-side-out membrane vesicles via the Kdp system of Escherichia coli. Biochim Biophys Acta. 1993 Jun 10;1143(1):62-6. PMID:8499455
  5. Haupt M, Bramkamp M, Coles M, Altendorf K, Kessler H. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes. J Mol Biol. 2004 Oct 1;342(5):1547-58. PMID:15364580 doi:http://dx.doi.org/10.1016/j.jmb.2004.07.060
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA