Alpha-glucosidase: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
Michal Harel (talk | contribs) No edit summary |
||
Line 12: | Line 12: | ||
<scene name='59/596427/Cv/3'>α-D-glucose binding site</scene> (PDB code [[3a4a]]).<ref>PMID:20812985</ref> Water molecules shown as red spheres. | <scene name='59/596427/Cv/3'>α-D-glucose binding site</scene> (PDB code [[3a4a]]).<ref>PMID:20812985</ref> Water molecules shown as red spheres. | ||
<scene name='59/596427/Cv/5'>Ca coordination site</scene>. | <scene name='59/596427/Cv/5'>Ca coordination site</scene>. | ||
==3D structures of α-glucosidase== | |||
[[Alpha-glucosidase 3D structures]] | |||
</StructureSection> | </StructureSection> | ||
Line 23: | Line 26: | ||
**[[2g3m]] – SsAGS – ''Sulfolobus solfataricus''<br /> | **[[2g3m]] – SsAGS – ''Sulfolobus solfataricus''<br /> | ||
**[[2ze0]] – | **[[2ze0]], [[5zcb]] – GeAGS – ''Geobacillus''<br /> | ||
**[[3w38]] – bAGS - beet<br /> | **[[3w38]] – bAGS - beet<br /> | ||
**[[2d73]], [[2jka]], [[3wfa]], [[5djw]], [[5f7c]], [[3wfa]], [[3a24]], [[5xfm]] – BtAGS – ''Bacterioides thetaiotaomicron''<br /> | **[[2d73]], [[2jka]], [[3wfa]], [[5djw]], [[5f7c]], [[3wfa]], [[3a24]], [[5xfm]] – BtAGS – ''Bacterioides thetaiotaomicron''<br /> | ||
Line 65: | Line 68: | ||
**[[3wel]], [[3wem]], [[3wen]], [[3weo]], [[3w37]] – bAGS + substrate<br /> | **[[3wel]], [[3wem]], [[3wen]], [[3weo]], [[3w37]] – bAGS + substrate<br /> | ||
**[[4xqm]] – fyAGS 2 MRH domain + mannose<br /> | **[[4xqm]] – fyAGS 2 MRH domain + mannose<br /> | ||
**[[5zcc]] – GeAGS (mutant) + maltose<br /> | |||
**[[5zcd]] – GeAGS (mutant) + maltotriose<br /> | |||
**[[5zce]] – GeAGS (mutant) + maltotetraose<br /> | |||
*Alpha-glucosidase YIHQ | |||
**[[5ohs]] – RrYIHQ + sulfoquinovoside derivative – ''Rhizobium radiobacter''<br /> | |||
**[[5ohy]] – RrYIHQ + inhibitor<br /> | |||
*Maltase | *Maltase | ||
Line 77: | Line 88: | ||
**[[5nn5]], [[5nn6]] – hAGS + jiromycin derivative<br /> | **[[5nn5]], [[5nn6]] – hAGS + jiromycin derivative<br /> | ||
*Isomaltase | *Maltase-glucoamylase | ||
**[[2qly]] – hAGS N-terminal catalytic subunit<br /> | |||
**[[2qmj]] – hAGS N-terminal catalytic subunit + acarbose<br /> | |||
**[[3ctt]] – hAGS N-terminal catalytic subunit + casuarine<br /> | |||
*Isomaltase or oligo-1,6-glucosidase | |||
**[[3a47]], [[3aj7]] – yAGS – yeast<br /> | **[[3a47]], [[3aj7]] – yAGS – yeast<br /> | ||
Line 86: | Line 103: | ||
**[[3pha]], [[3poc]] – RoAGS (mutant) + acarbose<br /> | **[[3pha]], [[3poc]] – RoAGS (mutant) + acarbose<br /> | ||
**[[3mkk]] – RoAGS + isomaltose <br /> | **[[3mkk]] – RoAGS + isomaltose <br /> | ||
**[[4m8u]], [[4maz]], [[4mb1]] – BsAGS 1 (mutant) – ''Bacillus subtilis''<br /> | |||
**[[4m56]] – BsAGS 1 + glucose <br /> | |||
**[[5wcz]] – BsAGS 1 + deoxynojirimycin analog<br /> | |||
**[[1uok]] – AGS – Bacillus cereus<br /> | |||
*Sucrase–isomaltase | |||
**[[3lpo]] – hAGS N-terminal <br /> | |||
**[[3lpp]] – hAGS N-terminal + kotalanol<br /> | |||
*Maltodextrin glucosidase | *Maltodextrin glucosidase | ||
Line 93: | Line 119: | ||
*6-phospho-α-glucosidase | *6-phospho-α-glucosidase | ||
**[[1u8x]] – | **[[1u8x]] – BsPAGS + α-glucose phosphate + NAD <br /> | ||
**[[6dux]] – KpPAGS + malate + NAD – ''Klebsiella pneumoniae''<br /> | |||
**[[6dvv]] – KpPAGS + Mn + NAD <br /> | |||
*Glucan 1,4-alpha glucosidase or glucoamylase | |||
**[[6frv]] – AnGAGS catalytic domain residues 25-640<br /> | |||
**[[5ghl]] – AnGAGS starch-binding domain residues 533-640<br /> | |||
**[[6fhv]] – GAGS – Penicillium oxalicum<br /> | |||
**[[6fhw]] – GAGS – Amorphotheca resinae<br /> | |||
*Glucan 1,6-α-glucosidase | *Glucan 1,6-α-glucosidase or dextran glucosidase | ||
**[[4aie]] – GAGS – ''Lactobacillus acidophilus''<br /> | **[[4aie]] – GAGS – ''Lactobacillus acidophilus''<br /> |
Revision as of 11:19, 6 March 2019
FunctionAlpha glucosidase (AGS) or maltase breaks down the 1,4-α bonds in starch or disaccharides to produce glucose. Maltase breaks down maltose. Isomaltase breaks the 1,6 bond.[1] See also Kennedy research. DiseaseAGS deficiency is the cause of Pompe Disease. AGS inhibitors are used as anti-diabetic drugs and can potentially prevent the fusion of HIV and hepatitis B virus to cells. Structural highlights(PDB code 3a4a).[2] Water molecules shown as red spheres. . 3D structures of α-glucosidaseAlpha-glucosidase 3D structures
|
|
3D structures of α-glucosidase3D structures of α-glucosidase
Updated on 06-March-2019
ReferencesReferences
- ↑ Gloster TM, Turkenburg JP, Potts JR, Henrissat B, Davies GJ. Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora. Chem Biol. 2008 Oct 20;15(10):1058-67. Epub 2008 Oct 9. PMID:18848471 doi:10.1016/j.chembiol.2008.09.005
- ↑ Yamamoto K, Miyake H, Kusunoki M, Osaki S. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J. 2010 Oct;277(20):4205-14. doi: 10.1111/j.1742-4658.2010.07810.x., Epub 2010 Aug 31. PMID:20812985 doi:10.1111/j.1742-4658.2010.07810.x