2bjs: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==ISOPENICILLIN N SYNTHASE C-TERMINAL TRUNCATION MUTANT==
 
==Isopenicillin N synthase C-terminal truncation mutant==
<StructureSection load='2bjs' size='340' side='right' caption='[[2bjs]], [[Resolution|resolution]] 1.30&Aring;' scene=''>
<StructureSection load='2bjs' size='340' side='right' caption='[[2bjs]], [[Resolution|resolution]] 1.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
Line 6: Line 7:
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1bk0|1bk0]], [[1blz|1blz]], [[1hb1|1hb1]], [[1hb2|1hb2]], [[1hb3|1hb3]], [[1hb4|1hb4]], [[1ips|1ips]], [[1obn|1obn]], [[1oc1|1oc1]], [[1odm|1odm]], [[1odn|1odn]], [[1qiq|1qiq]], [[1qje|1qje]], [[1qjf|1qjf]], [[1uzw|1uzw]], [[1w03|1w03]], [[1w04|1w04]], [[1w05|1w05]], [[1w06|1w06]], [[1w3v|1w3v]], [[1w3x|1w3x]], [[2bu9|2bu9]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1bk0|1bk0]], [[1blz|1blz]], [[1hb1|1hb1]], [[1hb2|1hb2]], [[1hb3|1hb3]], [[1hb4|1hb4]], [[1ips|1ips]], [[1obn|1obn]], [[1oc1|1oc1]], [[1odm|1odm]], [[1odn|1odn]], [[1qiq|1qiq]], [[1qje|1qje]], [[1qjf|1qjf]], [[1uzw|1uzw]], [[1w03|1w03]], [[1w04|1w04]], [[1w05|1w05]], [[1w06|1w06]], [[1w3v|1w3v]], [[1w3x|1w3x]], [[2bu9|2bu9]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Isopenicillin-N_synthase Isopenicillin-N synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.21.3.1 1.21.3.1] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Isopenicillin-N_synthase Isopenicillin-N synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.21.3.1 1.21.3.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2bjs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bjs OCA], [http://pdbe.org/2bjs PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2bjs RCSB], [http://www.ebi.ac.uk/pdbsum/2bjs PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2bjs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bjs OCA], [http://pdbe.org/2bjs PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2bjs RCSB], [http://www.ebi.ac.uk/pdbsum/2bjs PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2bjs ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
Line 14: Line 15:
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bj/2bjs_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bj/2bjs_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2bjs ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Isopenicillin N synthase (IPNS) catalyses the four-electron oxidation of a tripeptide, l-delta-(alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV), to give isopenicillin N (IPN), the first-formed beta-lactam in penicillin and cephalosporin biosynthesis. IPNS catalysis is dependent upon an iron(II) cofactor and oxygen as a co-substrate. In the absence of substrate, the carbonyl oxygen of the side-chain amide of the penultimate residue, Gln330, co-ordinates to the active-site metal iron. Substrate binding ablates the interaction between Gln330 and the metal, triggering rearrangement of seven C-terminal residues, which move to take up a conformation that extends the final alpha-helix and encloses ACV in the active site. Mutagenesis studies are reported, which probe the role of the C-terminal and other aspects of the substrate binding pocket in IPNS. The hydrophobic nature of amino acid side-chains around the ACV binding pocket is important in catalysis. Deletion of seven C-terminal residues exposes the active site and leads to formation of a new type of thiol oxidation product. The isolated product is shown by LC-MS and NMR analyses to be the ene-thiol tautomer of a dithioester, made up from two molecules of ACV linked between the thiol sulfur of one tripeptide and the oxidised cysteinyl beta-carbon of the other. A mechanism for its formation is proposed, supported by an X-ray crystal structure, which shows the substrate ACV bound at the active site, its cysteinyl beta-carbon exposed to attack by a second molecule of substrate, adjacent. Formation of this product constitutes a new mode of reaction for IPNS and non-heme iron oxidases in general.
Terminally Truncated Isopenicillin N Synthase Generates a Dithioester Product: Evidence for a Thioaldehyde Intermediate during Catalysis and a New Mode of Reaction for Non-Heme Iron Oxidases.,McNeill LA, Brown TJN, Sami M, Clifton IJ, Burzlaff NI, Claridge TDW, Adlington RM, Baldwin JE, Rutledge PJ, Schofield CJ Chemistry. 2017 Sep 18;23(52):12815-12824. doi: 10.1002/chem.201701592. Epub 2017, Aug 21. PMID:28703303<ref>PMID:28703303</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2bjs" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Isopenicillin N synthase|Isopenicillin N synthase]]
*[[Isopenicillin N synthase|Isopenicillin N synthase]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 10:29, 6 December 2017

Isopenicillin N synthase C-terminal truncation mutantIsopenicillin N synthase C-terminal truncation mutant

Structural highlights

2bjs is a 1 chain structure with sequence from A. nidulans. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Activity:Isopenicillin-N synthase, with EC number 1.21.3.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[IPNS_EMENI] Removes, in the presence of oxygen, 4 hydrogen atoms from delta-L-(alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to form the azetidinone and thiazolidine rings of isopenicillin.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Isopenicillin N synthase (IPNS) catalyses the four-electron oxidation of a tripeptide, l-delta-(alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV), to give isopenicillin N (IPN), the first-formed beta-lactam in penicillin and cephalosporin biosynthesis. IPNS catalysis is dependent upon an iron(II) cofactor and oxygen as a co-substrate. In the absence of substrate, the carbonyl oxygen of the side-chain amide of the penultimate residue, Gln330, co-ordinates to the active-site metal iron. Substrate binding ablates the interaction between Gln330 and the metal, triggering rearrangement of seven C-terminal residues, which move to take up a conformation that extends the final alpha-helix and encloses ACV in the active site. Mutagenesis studies are reported, which probe the role of the C-terminal and other aspects of the substrate binding pocket in IPNS. The hydrophobic nature of amino acid side-chains around the ACV binding pocket is important in catalysis. Deletion of seven C-terminal residues exposes the active site and leads to formation of a new type of thiol oxidation product. The isolated product is shown by LC-MS and NMR analyses to be the ene-thiol tautomer of a dithioester, made up from two molecules of ACV linked between the thiol sulfur of one tripeptide and the oxidised cysteinyl beta-carbon of the other. A mechanism for its formation is proposed, supported by an X-ray crystal structure, which shows the substrate ACV bound at the active site, its cysteinyl beta-carbon exposed to attack by a second molecule of substrate, adjacent. Formation of this product constitutes a new mode of reaction for IPNS and non-heme iron oxidases in general.

Terminally Truncated Isopenicillin N Synthase Generates a Dithioester Product: Evidence for a Thioaldehyde Intermediate during Catalysis and a New Mode of Reaction for Non-Heme Iron Oxidases.,McNeill LA, Brown TJN, Sami M, Clifton IJ, Burzlaff NI, Claridge TDW, Adlington RM, Baldwin JE, Rutledge PJ, Schofield CJ Chemistry. 2017 Sep 18;23(52):12815-12824. doi: 10.1002/chem.201701592. Epub 2017, Aug 21. PMID:28703303[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. McNeill LA, Brown TJN, Sami M, Clifton IJ, Burzlaff NI, Claridge TDW, Adlington RM, Baldwin JE, Rutledge PJ, Schofield CJ. Terminally Truncated Isopenicillin N Synthase Generates a Dithioester Product: Evidence for a Thioaldehyde Intermediate during Catalysis and a New Mode of Reaction for Non-Heme Iron Oxidases. Chemistry. 2017 Sep 18;23(52):12815-12824. doi: 10.1002/chem.201701592. Epub 2017, Aug 21. PMID:28703303 doi:http://dx.doi.org/10.1002/chem.201701592

2bjs, resolution 1.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA