6o83

From Proteopedia
Jump to navigation Jump to search

S. pombe ubiquitin E1~ubiquitin-AMP tetrahedral intermediate mimicS. pombe ubiquitin E1~ubiquitin-AMP tetrahedral intermediate mimic

Structural highlights

6o83 is a 4 chain structure with sequence from Schizosaccharomyces pombe 972h-. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.153Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

UBA1_SCHPO Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding an ubiquitin-E1 thioester and free AMP.

Publication Abstract from PubMed

The ubiquitin (Ub) and Ub-like (Ubl) protein-conjugation cascade is initiated by E1 enzymes that catalyze Ub/Ubl activation through C-terminal adenylation, thioester bond formation with an E1 catalytic cysteine, and thioester bond transfer to Ub/Ubl E2 conjugating enzymes. Each of these reactions is accompanied by conformational changes of the E1 domain that contains the catalytic cysteine (Cys domain). Open conformations of the Cys domain are associated with adenylation and thioester transfer to E2s, while a closed conformation is associated with pyrophosphate release and thioester bond formation. Several structures are available for Ub E1s, but none has been reported in the open state before pyrophosphate release or in the closed state. Here, we describe the structures of Schizosaccharomyces pombe Ub E1 in these two states, captured using semisynthetic Ub probes. In the first, with a Ub-adenylate mimetic (Ub-AMSN) bound, the E1 is in an open conformation before release of pyrophosphate. In the second, with a Ub-vinylsulfonamide (Ub-AVSN) bound covalently to the catalytic cysteine, the E1 is in a closed conformation required for thioester bond formation. These structures provide further insight into Ub E1 adenylation and thioester bond formation. Conformational changes that accompany Cys-domain rotation are conserved for SUMO and Ub E1s, but changes in Ub E1 involve additional surfaces as mutational and biochemical analysis of residues within these surfaces alter Ub E1 activities.

Structural basis for adenylation and thioester bond formation in the ubiquitin E1.,Hann ZS, Ji C, Olsen SK, Lu X, Lux MC, Tan DS, Lima CD Proc Natl Acad Sci U S A. 2019 Jun 24. pii: 1905488116. doi:, 10.1073/pnas.1905488116. PMID:31235585[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hann ZS, Ji C, Olsen SK, Lu X, Lux MC, Tan DS, Lima CD. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proc Natl Acad Sci U S A. 2019 Jun 24. pii: 1905488116. doi:, 10.1073/pnas.1905488116. PMID:31235585 doi:http://dx.doi.org/10.1073/pnas.1905488116

6o83, resolution 3.15Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA