4xjo

From Proteopedia
Jump to navigation Jump to search

Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with an inhibitor optimized from HTS leadCrystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with an inhibitor optimized from HTS lead

Structural highlights

4xjo is a 2 chain structure with sequence from Mycobacterium tuberculosis H37Rv. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BIOA_MYCTU Catalyzes the reversible transfer of the alpha-amino group from S-adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor. Can also use sinefungin as substrate.[1]

Publication Abstract from PubMed

The pyridoxal 5'-phosphate (PLP)-dependent transaminase BioA catalyzes the second step in the biosynthesis of biotin in Mycobacterium tuberculosis (Mtb) and is an essential enzyme for bacterial survival and persistence in vivo. A promising BioA inhibitor 6 containing an N-aryl, N'-benzoylpiperazine scaffold was previously identified by target-based whole-cell screening. Here, we explore the structure-activity relationships (SAR) through the design, synthesis, and biological evaluation of a systematic series of analogues of the original hit using a structure-based drug design strategy, which was enabled by cocrystallization of several analogues with BioA. To confirm target engagement and discern analogues with off-target activity, each compound was evaluated against wild-type (WT) Mtb in biotin-free and -containing medium as well as BioA under- and overexpressing Mtb strains. Conformationally constrained derivative 36 emerged as the most potent analogue with a KD of 76 nM against BioA and a minimum inhibitory concentration of 1.7 muM (0.6 mug/mL) against Mtb in biotin-free medium.

Structure-Based Optimization of Pyridoxal 5'-Phosphate-Dependent Transaminase Enzyme (BioA) Inhibitors that Target Biotin Biosynthesis in Mycobacterium tuberculosis.,Liu F, Dawadi S, Maize KM, Dai R, Park SW, Schnappinger D, Finzel BC, Aldrich CC J Med Chem. 2017 Jul 13;60(13):5507-5520. doi: 10.1021/acs.jmedchem.7b00189. Epub, 2017 Jun 22. PMID:28594172[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Mann S, Ploux O. 7,8-Diaminoperlargonic acid aminotransferase from Mycobacterium tuberculosis, a potential therapeutic target. Characterization and inhibition studies. FEBS J. 2006 Oct;273(20):4778-89. Epub 2006 Sep 19. PMID:16984394 doi:10.1111/j.1742-4658.2006.05479.x
  2. Liu F, Dawadi S, Maize KM, Dai R, Park SW, Schnappinger D, Finzel BC, Aldrich CC. Structure-Based Optimization of Pyridoxal 5'-Phosphate-Dependent Transaminase Enzyme (BioA) Inhibitors that Target Biotin Biosynthesis in Mycobacterium tuberculosis. J Med Chem. 2017 Jul 13;60(13):5507-5520. doi: 10.1021/acs.jmedchem.7b00189. Epub, 2017 Jun 22. PMID:28594172 doi:http://dx.doi.org/10.1021/acs.jmedchem.7b00189

4xjo, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA