4pkg

From Proteopedia
Jump to navigation Jump to search

Complex of ATP-actin With the N-terminal Actin-Binding Domain of TropomodulinComplex of ATP-actin With the N-terminal Actin-Binding Domain of Tropomodulin

Structural highlights

4pkg is a 2 chain structure with sequence from Homo sapiens and Oryctolagus cuniculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

GELS_HUMAN Defects in GSN are the cause of amyloidosis type 5 (AMYL5) [MIM:105120; also known as familial amyloidosis Finnish type. AMYL5 is a hereditary generalized amyloidosis due to gelsolin amyloid deposition. It is typically characterized by cranial neuropathy and lattice corneal dystrophy. Most patients have modest involvement of internal organs, but severe systemic disease can develop in some individuals causing peripheral polyneuropathy, amyloid cardiomyopathy, and nephrotic syndrome leading to renal failure.[1] [2] [3] [4]

Function

TMOD1_HUMAN Blocks the elongation and depolymerization of the actin filaments at the pointed end. The Tmod/TM complex contributes to the formation of the short actin protofilament, which in turn defines the geometry of the membrane skeleton. May play an important role in regulating the organization of actin filaments by preferentially binding to a specific tropomyosin isoform at its N-terminus.[5] GELS_HUMAN Calcium-regulated, actin-modulating protein that binds to the plus (or barbed) ends of actin monomers or filaments, preventing monomer exchange (end-blocking or capping). It can promote the assembly of monomers into filaments (nucleation) as well as sever filaments already formed. Plays a role in ciliogenesis.[6]

Publication Abstract from PubMed

Proteins that cap the ends of the actin filament are essential regulators of cytoskeleton dynamics. Whereas several proteins cap the rapidly growing barbed end, tropomodulin (Tmod) is the only protein known to cap the slowly growing pointed end. The lack of structural information severely limits our understanding of Tmod's capping mechanism. We describe crystal structures of actin complexes with the unstructured amino-terminal and the leucine-rich repeat carboxy-terminal domains of Tmod. The structures and biochemical analysis of structure-inspired mutants showed that one Tmod molecule interacts with three actin subunits at the pointed end, while also contacting two tropomyosin molecules on each side of the filament. We found that Tmod achieves high-affinity binding through several discrete low-affinity interactions, which suggests a mechanism for controlled subunit exchange at the pointed end.

Actin cytoskeleton. Mechanism of actin filament pointed-end capping by tropomodulin.,Rao JN, Madasu Y, Dominguez R Science. 2014 Jul 25;345(6195):463-7. doi: 10.1126/science.1256159. PMID:25061212[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Haltia M, Prelli F, Ghiso J, Kiuru S, Somer H, Palo J, Frangione B. Amyloid protein in familial amyloidosis (Finnish type) is homologous to gelsolin, an actin-binding protein. Biochem Biophys Res Commun. 1990 Mar 30;167(3):927-32. PMID:2157434
  2. Maury CP, Alli K, Baumann M. Finnish hereditary amyloidosis. Amino acid sequence homology between the amyloid fibril protein and human plasma gelsoline. FEBS Lett. 1990 Jan 15;260(1):85-7. PMID:2153578
  3. Ghiso J, Haltia M, Prelli F, Novello J, Frangione B. Gelsolin variant (Asn-187) in familial amyloidosis, Finnish type. Biochem J. 1990 Dec 15;272(3):827-30. PMID:2176481
  4. de la Chapelle A, Tolvanen R, Boysen G, Santavy J, Bleeker-Wagemakers L, Maury CP, Kere J. Gelsolin-derived familial amyloidosis caused by asparagine or tyrosine substitution for aspartic acid at residue 187. Nat Genet. 1992 Oct;2(2):157-60. PMID:1338910 doi:http://dx.doi.org/10.1038/ng1092-157
  5. Sung LA, Lin JJ. Erythrocyte tropomodulin binds to the N-terminus of hTM5, a tropomyosin isoform encoded by the gamma-tropomyosin gene. Biochem Biophys Res Commun. 1994 Jun 15;201(2):627-34. PMID:8002995 doi:http://dx.doi.org/10.1006/bbrc.1994.1747
  6. Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature. 2010 Apr 15;464(7291):1048-51. doi: 10.1038/nature08895. PMID:20393563 doi:10.1038/nature08895
  7. Rao JN, Madasu Y, Dominguez R. Actin cytoskeleton. Mechanism of actin filament pointed-end capping by tropomodulin. Science. 2014 Jul 25;345(6195):463-7. doi: 10.1126/science.1256159. PMID:25061212 doi:http://dx.doi.org/10.1126/science.1256159

4pkg, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA