3nyu

From Proteopedia
Jump to navigation Jump to search

X-ray crystal structure of the Wbpe (WlbE) aminotransferase from pseudomonas aeruginosa as the PLP internal aldimine adduct with lysine 185X-ray crystal structure of the Wbpe (WlbE) aminotransferase from pseudomonas aeruginosa as the PLP internal aldimine adduct with lysine 185

Structural highlights

3nyu is a 4 chain structure with sequence from Pseudomonas aeruginosa PAO1. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.501Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

WBPE_PSEAE Plays a role in the biosynthesis of B-band O antigen for serotype O5. Catalyzes the amination of UDP-2-acetamido-2-deoxy-3-oxo-D-glucuronic acid (UDP-3-oxo-D-GlcNAcA) to UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA), using L-glutamate as the preferred amine donor.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Campylobacter jejuni is a Gram-negative bacterium that represents a leading cause of human gastroenteritis worldwide. Of particular concern is the link between C. jejuni infections and the subsequent development of Guillain-Barre syndrome, an acquired autoimmune disorder leading to paralysis. All Gram-negative bacteria contain complex glycoconjugates anchored to their outer membranes, but in most strains of C. jejuni, this lipoglycan lacks the O-antigen repeating units. Recent mass spectrometry analyses indicate that the C. jejuni 81116 (Penner serotype HS:6) lipoglycan contains two dideoxyhexosamine residues, and enzymological assay data show that this bacterial strain can synthesize both dTDP-3-acetamido-3,6-dideoxy-d-glucose and dTDP-3-acetamido-3,6-dideoxy-d-galactose. The focus of this investigation is on WlaRG from C. jejuni, which plays a key role in the production of these unusual sugars by functioning as a pyridoxal 5'-phosphate dependent aminotransferase. Here we describe the first three-dimensional structures of the enzyme in various complexes determined to resolutions of 1.7 A or higher. Of particular significance are the external aldimine structures of WlaRG solved in the presence of either dTDP-3-amino-3,6-dideoxy-d-galactose or dTDP-3-amino-3,6-dideoxy-d-glucose. These models highlight the manner in which WlaRG can accommodate sugars with differing stereochemistries about their C-4' carbon positions. In addition, we present a corrected structure of WbpE, a related sugar aminotransferase from Pseudomonas aeruginosa, solved to 1.3 A resolution. This article is protected by copyright. All rights reserved.

Structural Investigation on WlaRG from Campylobacter jejuni: A Sugar Aminotransferase.,Dow GT, Gilbert M, Thoden JB, Holden HM Protein Sci. 2016 Dec 28. doi: 10.1002/pro.3109. PMID:28028852[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Westman EL, Preston A, Field RA, Lam JS. Biosynthesis of a rare di-N-acetylated sugar in the lipopolysaccharides of both Pseudomonas aeruginosa and Bordetella pertussis occurs via an identical scheme despite different gene clusters. J Bacteriol. 2008 Sep;190(18):6060-9. doi: 10.1128/JB.00579-08. Epub 2008 Jul 11. PMID:18621892 doi:10.1128/JB.00579-08
  2. Westman EL, McNally DJ, Charchoglyan A, Brewer D, Field RA, Lam JS. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J Biol Chem. 2009 May 1;284(18):11854-62. doi: 10.1074/jbc.M808583200. Epub 2009 , Mar 12. PMID:19282284 doi:10.1074/jbc.M808583200
  3. Larkin A, Imperiali B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry. 2009 Jun 16;48(23):5446-55. doi: 10.1021/bi900186u. PMID:19348502 doi:10.1021/bi900186u
  4. Dow GT, Gilbert M, Thoden JB, Holden HM. Structural Investigation on WlaRG from Campylobacter jejuni: A Sugar Aminotransferase. Protein Sci. 2016 Dec 28. doi: 10.1002/pro.3109. PMID:28028852 doi:http://dx.doi.org/10.1002/pro.3109

3nyu, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA