3dem
CUB1-EGF-CUB2 domain of HUMAN MASP-1/3CUB1-EGF-CUB2 domain of HUMAN MASP-1/3
Structural highlights
DiseaseMASP1_HUMAN Defects in MASP1 are the cause of 3MC syndrome type 1 (3MC1) [MIM:257920. 3MC1 is a disorder characterized by facial dysmorphism that includes hypertelorism, blepharophimosis, blepharoptosis and highly arched eyebrows, cleft lip and/or palate, craniosynostosis, learning disability and genital, limb and vesicorenal anomalies. The term 3MC syndrome includes Carnevale, Mingarelli, Malpuech, and Michels syndromes.[1] FunctionMASP1_HUMAN Functions in the lectin pathway of complement, which performs a key role in innate immunity by recognizing pathogens through patterns of sugar moieties and neutralizing them. The lectin pathway is triggered upon binding of mannan-binding lectin (MBL) and ficolins to sugar moieties which leads to activation of the associated proteases MASP1 and MASP2. Functions as an endopeptidase and may activate MASP2 or C2 or directly activate C3 the key component of complement reaction. Isoform 2 may have an inhibitory effect on the activation of the lectin pathway of complement or may cleave IGFBP5.[2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedMASP-1 and MASP-3 are homologous proteases arising from alternative splicing of the MASP1/3 gene. They include an identical CUB(1)-EGF-CUB(2)-CCP(1)-CCP(2) module array prolonged by different serine protease domains at the C-terminal end. The x-ray structure of the CUB(1)-EGF-CUB(2) domain of human MASP-1/3, responsible for interaction of MASP-1 and -3 with their partner proteins mannan-binding lectin (MBL) and ficolins, was solved to a resolution of 2.3A(.) The structure shows a head-to-tail homodimer mainly stabilized by hydrophobic interactions between the CUB(1) module of one monomer and the epidermal growth factor (EGF) module of its counterpart. A Ca(2+) ion bound primarily to both EGF modules stabilizes the intra- and inter-monomer CUB(1)-EGF interfaces. Additional Ca(2+) ions are bound to each CUB(1) and CUB(2) module through six ligands contributed by Glu(49), Asp(57), Asp(102), and Ser(104) (CUB(1)) and their counterparts Glu(216), Asp(226), Asp(263), and Ser(265) (CUB(2)), plus one and two water molecules, respectively. To identify the residues involved in interaction of MASP-1 and -3 with MBL and L- and H-ficolins, 27 point mutants of human MASP-3 were generated, and their binding properties were analyzed using surface plasmon resonance spectroscopy. These mutations map two homologous binding sites contributed by modules CUB(1) and CUB(2), located in close vicinity of their Ca(2+)-binding sites and stabilized by the Ca(2+) ion. This information allows us to propose a model of the MBL-MASP-1/3 interaction, involving a major electrostatic interaction between two acidic Ca(2+) ligands of MASP-1/3 and a conserved lysine of MBL. Based on these and other data, a schematic model of a MBL.MASP complex is proposed. Crystal structure of the CUB1-EGF-CUB2 domain of human MASP-1/3 and identification of its interaction sites with mannan-binding lectin and ficolins.,Teillet F, Gaboriaud C, Lacroix M, Martin L, Arlaud GJ, Thielens NM J Biol Chem. 2008 Sep 12;283(37):25715-24. Epub 2008 Jul 2. PMID:18596036[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|