1igl
SOLUTION STRUCTURE OF HUMAN INSULIN-LIKE GROWTH FACTOR II RELATIONSHIP TO RECEPTOR AND BINDING PROTEIN INTERACTIONSSOLUTION STRUCTURE OF HUMAN INSULIN-LIKE GROWTH FACTOR II RELATIONSHIP TO RECEPTOR AND BINDING PROTEIN INTERACTIONS
Structural highlights
DiseaseIGF2_HUMAN Epigenetic changes of DNA hypomethylation in IGF2 are a cause of Silver-Russell syndrome (SRS) [MIM:180860. A clinically heterogeneous condition characterized by severe intrauterine growth retardation, poor postnatal growth, craniofacial features such as a triangular shaped face and a broad forehead, body asymmetry, and a variety of minor malformations. The phenotypic expression changes during childhood and adolescence, with the facial features and asymmetry usually becoming more subtle with age.[1] FunctionIGF2_HUMAN The insulin-like growth factors possess growth-promoting activity. In vitro, they are potent mitogens for cultured cells. IGF-II is influenced by placental lactogen and may play a role in fetal development.[2] Preptin undergoes glucose-mediated co-secretion with insulin, and acts as physiological amplifier of glucose-mediated insulin secretion. Exhibits osteogenic properties by increasing osteoblast mitogenic activity through phosphoactivation of MAPK1 and MAPK3.[3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe three-dimensional structure of human insulin-like growth factor (IGF) II in aqueous solution at pH 3.1 and 300 K has been determined from nuclear magnetic resonance data and restrained molecular dynamics calculations. Structural constraints consisting of 502 NOE-derived distance constraints, 11 dihedral angle restraints, and three disulfide bridges were used as input for distance geometry calculations in DIANA and X-PLOR, followed by simulated annealing refinement and energy minimization in X-PLOR. The resulting family of 20 structures was well defined in the regions of residues 5 to 28 and 41 to 62, with an average pairwise root-mean-square deviation of 1.24 A for the backbone heavy-atoms (N, C2, C) and 1.90 A for all heavy atoms. The poorly defined regions consist of the N and C termini, part of the B-domain, and the C-domain loop. Resonances from these regions of the protein gave stronger cross peaks in two dimensional NMR spectra, consistent with significant motional averaging. The main secondary structure elements in IGF-II are alpha-helices encompassing residues 11 to 21, 42 to 49 and 53 to 59. A small anti-parallel beta-sheet is formed by residues 59 to 61 and 25 to 27, while residues 26 to 28 appear to participate in intermolecular beta-sheet formation. The structure of IGF-II in the well-defined regions is very similar to those of the corresponding regions of insulin and IGF-I. Significant differences between IGF-II and IGF-I occur near the start of the third helix, in a region known to modulate affinity for the type 2 IGF receptor, and at the C terminus. The IGF II structure is discussed in relation to its binding sites for the insulin and IGF receptors and the IGF binding proteins. Solution structure of human insulin-like growth factor II. Relationship to receptor and binding protein interactions.,Torres AM, Forbes BE, Aplin SE, Wallace JC, Francis GL, Norton RS J Mol Biol. 1995 Apr 28;248(2):385-401. PMID:7739048[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|