1clu
H-RAS COMPLEXED WITH DIAMINOBENZOPHENONE-BETA,GAMMA-IMIDO-GTPH-RAS COMPLEXED WITH DIAMINOBENZOPHENONE-BETA,GAMMA-IMIDO-GTP
Structural highlights
DiseaseRASH_HUMAN Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:218040. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.[1] [2] [3] [4] [5] [6] [7] Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:218040. CMEMS is a variant of Costello syndrome.[8] Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:607464. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms. Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors. Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:109800. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).[9] Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:163200. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.[10] FunctionRASH_HUMAN Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.[11] [12] [13] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedInterest in the guanosine triphosphatase (GTPase) reaction of Ras as a molecular drug target stems from the observation that, in a large number of human tumors, Ras is characteristically mutated at codons 12 or 61, more rarely 13. Impaired GTPase activity, even in the presence of GTPase activating proteins, has been found to be the biochemical reason behind the oncogenicity of most Gly12/Gln61 mutations, thus preventing Ras from being switched off. Therefore, these oncogenic Ras mutants remain constitutively activated and contribute to the neoplastic phenotype of tumor cells. Here, we show that the guanosine 5'-triphosphate (GTP) analogue diaminobenzophenone-phosphoroamidate-GTP (DABP-GTP) is hydrolyzed by wild-type Ras but more efficiently by frequently occurring oncogenic Ras mutants, to yield guanosine 5'-diphosphate-bound inactive Ras and DABP-Pi. The reaction is independent of the presence of Gln61 and is most dramatically enhanced with Gly12 mutants. Thus, the defective GTPase reaction of the oncogenic Ras mutants can be rescued by using DABP-GTP instead of GTP, arguing that the GTPase switch of Ras is not irreversibly damaged. An exocyclic aromatic amino group of DABP-GTP is critical for the reaction and bypasses the putative rate-limiting step of the intrinsic Ras GTPase reaction. The crystal structures of Ras-bound DABP-beta,gamma-imido-GTP show a disordered switch I and identify the Gly12/Gly13 region as the hydrophobic patch to accommodate the DABP-moiety. The biochemical and structural studies help to define the requirements for the design of anti-Ras drugs aimed at the blocked GTPase reaction. Guanosine triphosphatase stimulation of oncogenic Ras mutants.,Ahmadian MR, Zor T, Vogt D, Kabsch W, Selinger Z, Wittinghofer A, Scheffzek K Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7065-70. PMID:10359839[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|