1fif

From Proteopedia
Revision as of 02:58, 21 November 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

N-ACETYLGALACTOSAMINE-SELECTIVE MUTANT OF MANNOSE-BINDING PROTEIN-A (QPDWG-HDRPY)N-ACETYLGALACTOSAMINE-SELECTIVE MUTANT OF MANNOSE-BINDING PROTEIN-A (QPDWG-HDRPY)

Structural highlights

1fif is a 3 chain structure with sequence from Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.95Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MBL1_RAT Calcium-dependent lectin involved in innate immune defense. Binds mannose, fucose and N-acetylglucosamine on different microorganisms and activates the lectin complement pathway. Binds to late apoptotic cells, as well as to apoptotic blebs and to necrotic cells, but not to early apoptotic cells, facilitating their uptake by macrophages (By similarity).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Efficient release of ligands from the Ca(2+)-dependent carbohydrate-recognition domain (CRD) of the hepatic asialoglycoprotein receptor at endosomal pH requires a small set of conserved amino acids that includes a critical histidine residue. When these residues are incorporated at corresponding positions in an homologous galactose-binding derivative of serum mannose-binding protein, the pH dependence of ligand binding becomes more like that of the receptor. The modified CRD displays 40-fold preferential binding to N-acetylgalactosamine compared with galactose, making it a good functional mimic of the asialoglycoprotein receptor. In the crystal structure of the modified CRD bound to N-acetylgalactosamine, the histidine (His(202)) contacts the 2-acetamido methyl group and also participates in a network of interactions involving Asp(212), Arg(216), and Tyr(218) that positions a water molecule in a hydrogen bond with the sugar amide group. These interactions appear to produce the preference for N-acetylgalactosamine over galactose and are also likely to influence the pK(a) of His(202). Protonation of His(202) would disrupt its interaction with an asparagine that serves as a ligand for Ca(2+) and sugar. The structure of the modified CRD without sugar displays several different conformations that may represent structures of intermediates in the release of Ca(2+) and sugar ligands caused by protonation of His(202).

Mechanism of pH-dependent N-acetylgalactosamine binding by a functional mimic of the hepatocyte asialoglycoprotein receptor.,Feinberg H, Torgersen D, Drickamer K, Weis WI J Biol Chem. 2000 Nov 10;275(45):35176-84. PMID:10931846[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Feinberg H, Torgersen D, Drickamer K, Weis WI. Mechanism of pH-dependent N-acetylgalactosamine binding by a functional mimic of the hepatocyte asialoglycoprotein receptor. J Biol Chem. 2000 Nov 10;275(45):35176-84. PMID:10931846 doi:10.1074/jbc.M005557200

1fif, resolution 1.95Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA