4u2s

Revision as of 03:49, 28 December 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Cholesterol oxidase in the reduced state complexed with isopropanolCholesterol oxidase in the reduced state complexed with isopropanol

Structural highlights

4u2s is a 1 chain structure with sequence from Streptomyces sp. SA-COO. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.12Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CHOD_STRS0 Bifunctional enzyme that catalyzes the oxidation of the 3-beta-hydroxy group of cholesterol and the isomerization of the double bond of the resulting product.

Publication Abstract from PubMed

Cholesterol oxidase (CO) is a flavoenzyme that catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The reductive half reaction occurs via a hydride transfer from the substrate to the FAD cofactor. The structures of CO reduced with dithionite under aerobic conditions and in the presence of the substrate 2-propanol under both aerobic and anaerobic conditions are presented. The 1.32 A resolution structure of the dithionite-reduced enzyme reveals a sulfite molecule covalently bound to the FAD cofactor. The isoalloxazine ring system displays a bent structure relative to that of the oxidized enzyme, and alternate conformations of a triad of aromatic residues near to the cofactor are evident. A 1.12 A resolution anaerobically trapped reduced enzyme structure in the presence of 2-propanol does not show a similar bending of the flavin ring system, but does show alternate conformations of the aromatic triad. Additionally, a significant difference electron-density peak is observed within a covalent-bond distance of N5 of the flavin moiety, suggesting that a hydride-transfer event has occurred as a result of substrate oxidation trapping the flavin in the electron-rich reduced state. The hydride transfer generates a tetrahedral geometry about the flavin N5 atom. High-level density-functional theory calculations were performed to correlate the crystallographic findings with the energetics of this unusual arrangement of the flavin moiety. These calculations suggest that strong hydrogen-bond interactions between Gly120 and the flavin N5 centre may play an important role in these structural features.

High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization.,Golden E, Karton A, Vrielink A Acta Crystallogr D Biol Crystallogr. 2014 Dec 1;70(Pt 12):3155-66. doi:, 10.1107/S139900471402286X. Epub 2014 Nov 22. PMID:25478834[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Golden E, Karton A, Vrielink A. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization. Acta Crystallogr D Biol Crystallogr. 2014 Dec 1;70(Pt 12):3155-66. doi:, 10.1107/S139900471402286X. Epub 2014 Nov 22. PMID:25478834 doi:http://dx.doi.org/10.1107/S139900471402286X

4u2s, resolution 1.12Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA