6ee0

From Proteopedia
Revision as of 09:24, 11 October 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal Structure of SNX23 PX domainCrystal Structure of SNX23 PX domain

Structural highlights

6ee0 is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.518Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KI16B_HUMAN Plus end-directed microtubule-dependent motor protein involved in endosome transport and receptor recycling and degradation. Regulates the plus end motility of early endosomes and the balance between recycling and degradation of receptors such as EGF receptor (EGFR) and FGF receptor (FGFR). Regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development.[1]

Publication Abstract from PubMed

Phox homology (PX) domains are membrane interacting domains that bind to phosphatidylinositol phospholipids or phosphoinositides, markers of organelle identity in the endocytic system. Although many PX domains bind the canonical endosome-enriched lipid PtdIns3P, others interact with alternative phosphoinositides, and a precise understanding of how these specificities arise has remained elusive. Here we systematically screen all human PX domains for their phospholipid preferences using liposome binding assays, biolayer interferometry and isothermal titration calorimetry. These analyses define four distinct classes of human PX domains that either bind specifically to PtdIns3P, non-specifically to various di- and tri-phosphorylated phosphoinositides, bind both PtdIns3P and other phosphoinositides, or associate with none of the lipids tested. A comprehensive evaluation of PX domain structures reveals two distinct binding sites that explain these specificities, providing a basis for defining and predicting the functional membrane interactions of the entire PX domain protein family.

Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities.,Chandra M, Chin YK, Mas C, Feathers JR, Paul B, Datta S, Chen KE, Jia X, Yang Z, Norwood SJ, Mohanty B, Bugarcic A, Teasdale RD, Henne WM, Mobli M, Collins BM Nat Commun. 2019 Apr 4;10(1):1528. doi: 10.1038/s41467-019-09355-y. PMID:30948714[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hoepfner S, Severin F, Cabezas A, Habermann B, Runge A, Gillooly D, Stenmark H, Zerial M. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell. 2005 May 6;121(3):437-50. PMID:15882625 doi:http://dx.doi.org/10.1016/j.cell.2005.02.017
  2. Chandra M, Chin YK, Mas C, Feathers JR, Paul B, Datta S, Chen KE, Jia X, Yang Z, Norwood SJ, Mohanty B, Bugarcic A, Teasdale RD, Henne WM, Mobli M, Collins BM. Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities. Nat Commun. 2019 Apr 4;10(1):1528. doi: 10.1038/s41467-019-09355-y. PMID:30948714 doi:http://dx.doi.org/10.1038/s41467-019-09355-y

6ee0, resolution 2.52Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA