2gq3

From Proteopedia
Revision as of 12:46, 30 August 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

mycobacterium tuberculosis malate synthase in complex with magnesium, malate, and coenzyme Amycobacterium tuberculosis malate synthase in complex with magnesium, malate, and coenzyme A

Structural highlights

2gq3 is a 2 chain structure with sequence from Mycobacterium tuberculosis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT, TOPSAN

Function

MASZ_MYCTU Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl-CoA) and glyoxylate to form malate and CoA (By similarity).[HAMAP-Rule:MF_00641]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Enzymes of the glyoxylate shunt have been implicated as virulence factors in several pathogenic organisms, notably Mycobacterium tuberculosis and Candida albicans. Malate synthase has thus emerged as a promising target for design of anti-microbial agents. For this effort, it is essential to have reliable models for enzyme:substrate complexes. A 2.7 Angstroms resolution crystal structure for M. tuberculosis malate synthase in the ternary complex with magnesium, malate, and coenzyme A has been previously described. However, some unusual aspects of malate and Mg(++) binding prompted an independent determination of the structure at 2.3 Angstroms resolution, in the presence of saturating concentrations of malate. The electron density map of the complex reveals the position and conformation of coenzyme A to be unchanged from that found in the previous study. However, the coordination of Mg(++) and orientation of bound malate within the active site are different. The revised position of bound malate is consistent with a reaction mechanism that does not require reorientation of the electrophilic substrate during the catalytic cycle, while the revised Mg(++) coordination is octahedral, as expected. The results should be useful in the design of malate synthase inhibitors.

The product complex of M. tuberculosis malate synthase revisited.,Anstrom DM, Remington SJ Protein Sci. 2006 Aug;15(8):2002-7. PMID:16877713[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Anstrom DM, Remington SJ. The product complex of M. tuberculosis malate synthase revisited. Protein Sci. 2006 Aug;15(8):2002-7. PMID:16877713 doi:15/8/2002

2gq3, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA