5e6m

From Proteopedia
Revision as of 09:14, 5 July 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal structure of human wild type GlyRS bound with tRNAGlyCrystal structure of human wild type GlyRS bound with tRNAGly

Structural highlights

5e6m is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.927Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

GARS_HUMAN Autosomal dominant Charcot-Marie-Tooth disease type 2D;Distal hereditary motor neuropathy type 5. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry.

Function

GARS_HUMAN Catalyzes the ATP-dependent ligation of glycine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (Gly-AMP) (PubMed:17544401, PubMed:28675565, PubMed:24898252). Also produces diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs. Thereby, may play a special role in Ap4A homeostasis (PubMed:19710017).[1] [2] [3] [4]

Publication Abstract from PubMed

Aminoacyl-tRNA synthetases are essential components of the protein translational machinery in all living species, among which the human glycyl-tRNA synthetase (hGlyRS) is of great research interest because of its unique species-specific aminoacylation properties and noncanonical roles in the Charcot-Marie-Tooth neurological disease. However, the molecular mechanisms of how the enzyme carries out its classical and alternative functions are not well understood. Here, we report a complex structure of the wild-type hGlyRS bound with tRNAGly at 2.95A. In the complex, the flexible Whep-TRS domain is visible in one of the subunits of the enzyme dimer, and the tRNA molecule is also completely resolved. At the active site, a glycyl-AMP molecule is synthesized and is waiting for the transfer of the glycyl moiety to occur. This cocrystal structure provides us with new details about the recognition mechanism in the intermediate stage during glycylation, which was not well elucidated in the previous crystal structures where the inhibitor AMPPNP was used for crystallization. More importantly, the structural and biochemical work conducted in the current and previous studies allows us to build a model of the full-length hGlyRS in complex with tRNAGly, which greatly helps us to understand the roles that insertions and the Whep-TRS domain play in the tRNA-binding process. Finally, through structure comparison with other class II aminoacyl-tRNA synthetases bound with their tRNA substrates, we found some commonalities of the aminoacylation mechanism between these enzymes.

Crystal Structure of the Wild-Type Human GlyRS Bound with tRNAGly in a Productive Conformation.,Qin X, Deng X, Chen L, Xie W J Mol Biol. 2016 May 31. pii: S0022-2836(16)30187-5. doi:, 10.1016/j.jmb.2016.05.018. PMID:27261259[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Cader MZ, Ren J, James PA, Bird LE, Talbot K, Stammers DK. Crystal structure of human wildtype and S581L-mutant glycyl-tRNA synthetase, an enzyme underlying distal spinal muscular atrophy. FEBS Lett. 2007 Jun 26;581(16):2959-64. Epub 2007 May 29. PMID:17544401 doi:10.1016/j.febslet.2007.05.046
  2. Guo RT, Chong YE, Guo M, Yang XL. Crystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis. J Biol Chem. 2009 Oct 16;284(42):28968-76. Epub 2009 Aug 26. PMID:19710017 doi:10.1074/jbc.M109.030692
  3. Qin X, Hao Z, Tian Q, Zhang Z, Zhou C, Xie W. Cocrystal Structures of Glycyl-tRNA Synthetase in Complex with tRNA Suggest Multiple Conformational States in Glycylation. J Biol Chem. 2014 Jul 18;289(29):20359-69. doi: 10.1074/jbc.M114.557249. Epub, 2014 Jun 4. PMID:24898252 doi:http://dx.doi.org/10.1074/jbc.M114.557249
  4. Oprescu SN, Chepa-Lotrea X, Takase R, Golas G, Markello TC, Adams DR, Toro C, Gropman AL, Hou YM, Malicdan MCV, Gahl WA, Tifft CJ, Antonellis A. Compound heterozygosity for loss-of-function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation. Hum Mutat. 2017 Oct;38(10):1412-1420. doi: 10.1002/humu.23287. Epub 2017 Jul 14. PMID:28675565 doi:http://dx.doi.org/10.1002/humu.23287
  5. Qin X, Deng X, Chen L, Xie W. Crystal Structure of the Wild-Type Human GlyRS Bound with tRNAGly in a Productive Conformation. J Mol Biol. 2016 May 31. pii: S0022-2836(16)30187-5. doi:, 10.1016/j.jmb.2016.05.018. PMID:27261259 doi:http://dx.doi.org/10.1016/j.jmb.2016.05.018

5e6m, resolution 2.93Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA