Structure, interactions and evolutionary implications of a domain-swapped lectin dimer from Mycobacterium smegmatisStructure, interactions and evolutionary implications of a domain-swapped lectin dimer from Mycobacterium smegmatis

Structural highlights

4oit is a 4 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Crystal structure determination of the lectin domain of MSMEG_3662 from Mycobacterium smegmatis and its complexes with mannose and methyl-alpha-mannose, the first effort of its kind on a mycobacterial lectin, reveals a structure very similar to beta-prism II fold lectins from plant sources, but with extensive unprecedented domain swapping in dimer formation. The two subunits in a dimer often show small differences in structure, but the two domains, not always related by twofold symmetry, have the same structure. Each domain carries three sugar binding sites, similar to those in plant lectins, one on each Greek key motif. The occurrence of beta-prism II fold lectins in bacteria, with characteristics similar to those from plants, indicate that this family of lectins are of ancient origin and had evolved into a mature system before bacteria and plants diverged. In plants, the number of binding sites per domain varies between one and three while the number is two in the recently reported lectin domains from Pseudomonas putida and Pseudomonas aeruginosa. An analysis of the sequences of the lectins and the lectin domains shows that the level of sequence similarity among the three Greek keys in each domain has a correlation with the number of binding sites in it. Furthermore, sequence conservation among the lectins from different species is the highest for that Greek key which carries a binding site in all of them. Thus, it would appear that carbohydrate binding influences the course of the evolution of the lectin.

Structure, interactions and evolutionary implications of a domain-swapped lectin dimer from Mycobacterium smegmatis.,Patra D, Mishra P, Surolia A, Vijayan M Glycobiology. 2014 Jun 22. pii: cwu059. PMID:24957055[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Patra D, Mishra P, Surolia A, Vijayan M. Structure, interactions and evolutionary implications of a domain-swapped lectin dimer from Mycobacterium smegmatis. Glycobiology. 2014 Jun 22. pii: cwu059. PMID:24957055 doi:http://dx.doi.org/10.1093/glycob/cwu059

4oit, resolution 2.24Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA