1svj

From Proteopedia
Revision as of 11:00, 14 March 2018 by OCA (talk | contribs)
Jump to navigation Jump to search

The solution structure of the nucleotide binding domain of KdpBThe solution structure of the nucleotide binding domain of KdpB

Structural highlights

1svj is a 1 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:KDPB, B0697 ("Bacillus coli" Migula 1895)
Activity:Potassium-transporting ATPase, with EC number 3.6.3.12
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[ATKB_ECOLI] One of the components of the high-affinity ATP-driven potassium transport (or KDP) system, which catalyzes the hydrolysis of ATP coupled with the exchange of hydrogen and potassium ions.[HAMAP-Rule:MF_00285]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

P-type ATPases are involved in the active transport of ions across biological membranes. The KdpFABC complex (P-type ATPase) of Escherichia coli is a high-affinity K+ uptake system that operates only when the cell experiences osmotic stress or K+ limitation. Here, we present the solution structure of the nucleotide binding domain of KdpB (backbone RMSD 0.17 A) and a model of the AMP-PNP binding mode based on intermolecular distance restraints. The calculated AMP-PNP binding mode shows the purine ring of the nucleotide to be "clipped" into the binding pocket via a pi-pi-interaction to F377 on one side and a cation-pi-interaction to K395 on the other. This binding mechanism seems to be conserved in all P-type ATPases, except the heavy metal transporting ATPases (type IB). Thus, we conclude that the Kdp-ATPase (currently type IA) is misgrouped and has more similarities to type III ATPases. The KdpB N-domain is the smallest and simplest known for a P-type ATPase, and represents a minimal example of this functional unit. No evidence of significant conformational changes was observed within the N-domain upon nucleotide binding, thus ruling out a role for ATP-induced conformational changes in the reaction cycle.

Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes.,Haupt M, Bramkamp M, Coles M, Altendorf K, Kessler H J Mol Biol. 2004 Oct 1;342(5):1547-58. PMID:15364580[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Haupt M, Bramkamp M, Coles M, Altendorf K, Kessler H. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes. J Mol Biol. 2004 Oct 1;342(5):1547-58. PMID:15364580 doi:http://dx.doi.org/10.1016/j.jmb.2004.07.060
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA