3brx

From Proteopedia
Revision as of 13:40, 20 January 2015 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal Structure of calcium-bound cotton annexin Gh1Crystal Structure of calcium-bound cotton annexin Gh1

Structural highlights

3brx is a 1 chain structure with sequence from Gossypium hirsutum. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:AnnGh1 (Gossypium hirsutum)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Plant annexins show distinct differences in comparison with their animal orthologues. In particular, the endonexin sequence, which is responsible for coordination of calcium ions in type II binding sites, is only partially conserved in plant annexins. The crystal structure of calcium-bound cotton annexin Gh1 was solved at 2.5 A resolution and shows three metal ions coordinated in the first and fourth repeat in types II and III binding sites. Although the protein has no detectable affinity for calcium in solution, in the presence of phospholipid vesicles, we determined a stoichiometry of four calcium ions per protein molecule using isothermal titration calorimetry. Further analysis of the crystal structure showed that binding of a fourth calcium ion is structurally possible in the DE loop of the first repeat. Data from this study are in agreement with the canonical membrane binding of annexins, which is facilitated by the convex surface associating with the phospholipid bilayer by a calcium bridging mechanism. In annexin Gh1, this membrane-binding state is characterized by four calcium bridges in the I/IV module of the protein and by direct interactions of several surface-exposed basic and hydrophobic residues with the phospholipid membrane. Analysis of the protein fold stability revealed that the presence of calcium lowers the thermal stability of plant annexins. Furthermore, an additional unfolding step was detected at lower temperatures, which can be explained by the anchoring of the N-terminal domain to the C-terminal core by two conserved hydrogen bonds.

The crystal structure of calcium-bound annexin Gh1 from Gossypium hirsutum and its implications for membrane binding mechanisms of plant annexins.,Hu NJ, Yusof AM, Winter A, Osman A, Reeve AK, Hofmann A J Biol Chem. 2008 Jun 27;283(26):18314-22. Epub 2008 Apr 25. PMID:18441010[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hu NJ, Yusof AM, Winter A, Osman A, Reeve AK, Hofmann A. The crystal structure of calcium-bound annexin Gh1 from Gossypium hirsutum and its implications for membrane binding mechanisms of plant annexins. J Biol Chem. 2008 Jun 27;283(26):18314-22. Epub 2008 Apr 25. PMID:18441010 doi:10.1074/jbc.M801051200

3brx, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA