3aaa

From Proteopedia
Revision as of 05:34, 25 December 2014 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal Structure of Actin capping protein in complex with V-1Crystal Structure of Actin capping protein in complex with V-1

Structural highlights

3aaa is a 3 chain structure with sequence from Gallus gallus and Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:CAPZA1 (Gallus gallus), CAPZB (Gallus gallus), MTPN (Homo sapiens)
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[CAZA1_CHICK] F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments. CapZ may mediate the attachment of the barbed ends of actin filaments to the Z-line. [MTPN_HUMAN] Promotes dimerization of NF-kappa-B subunits and regulates NF-kappa-B transcription factor activity (By similarity). Plays a role in the regulation of the growth of actin filaments. Inhibits the activity of the F-actin-capping protein complex formed by the CAPZA1 and CAPZB heterodimer. Promotes growth of cardiomyocytes, but not cardiomyocyte proliferation. Promotes cardiac muscle hypertrophy.[1] [2] [3] [CAPZB_CHICK] F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments. May play a role in the regulation of cell morphology and cytoskeletal organization.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The actin capping protein (CP) tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity). Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1). V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a structural basis for the regulation of the barbed end elongation in cells.

Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition.,Takeda S, Minakata S, Koike R, Kawahata I, Narita A, Kitazawa M, Ota M, Yamakuni T, Maeda Y, Nitanai Y PLoS Biol. 2010 Jul 6;8(7):e1000416. PMID:20625546[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Anderson KM, Berrebi-Bertrand I, Kirkpatrick RB, McQueney MS, Underwood DC, Rouanet S, Chabot-Fletcher M. cDNA sequence and characterization of the gene that encodes human myotrophin/V-1 protein, a mediator of cardiac hypertrophy. J Mol Cell Cardiol. 1999 Apr;31(4):705-19. PMID:10329199 doi:http://dx.doi.org/10.1006/jmcc.1998.0903
  2. Bhattacharya N, Ghosh S, Sept D, Cooper JA. Binding of myotrophin/V-1 to actin-capping protein: implications for how capping protein binds to the filament barbed end. J Biol Chem. 2006 Oct 13;281(41):31021-30. Epub 2006 Aug 7. PMID:16895918 doi:http://dx.doi.org/10.1074/jbc.M606278200
  3. Takeda S, Minakata S, Koike R, Kawahata I, Narita A, Kitazawa M, Ota M, Yamakuni T, Maeda Y, Nitanai Y. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition. PLoS Biol. 2010 Jul 6;8(7):e1000416. PMID:20625546 doi:10.1371/journal.pbio.1000416
  4. Takeda S, Minakata S, Koike R, Kawahata I, Narita A, Kitazawa M, Ota M, Yamakuni T, Maeda Y, Nitanai Y. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition. PLoS Biol. 2010 Jul 6;8(7):e1000416. PMID:20625546 doi:10.1371/journal.pbio.1000416

3aaa, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA