1u7d
crystal structure of apo M. jannashii tyrosyl-tRNA synthetasecrystal structure of apo M. jannashii tyrosyl-tRNA synthetase
Structural highlights
FunctionSYY_METJA Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe Methanococcus jannaschii tRNA(Tyr)/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-L-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 A, respectively, for comparison with the published structure of TyrRS complexed with tRNA(Tyr) and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257-263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through pi-stacking and hydrogen bonding interactions. Loop 133-143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNA(Tyr). Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133-143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over L-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine.,Zhang Y, Wang L, Schultz PG, Wilson IA Protein Sci. 2005 May;14(5):1340-9. PMID:15840835[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|