2lcq

From Proteopedia
Revision as of 13:52, 15 February 2023 by OCA (talk | contribs)
Jump to navigation Jump to search

Solution structure of the endonuclease Nob1 from P.horikoshiiSolution structure of the endonuclease Nob1 from P.horikoshii

Structural highlights

2lcq is a 1 chain structure with sequence from Pyrococcus horikoshii OT3. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NOB1_PYRHO Toxic component of a toxin-antitoxin (TA) module (Potential). Processes pre-16S-rRNA at its 3' end (the D-site) to yield the mature 3' end.[1]

Publication Abstract from PubMed

Eukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner. The structure of PhNob1 solved by nuclear magnetic resonance spectroscopy revealed a PIN domain common with many nucleases and a zinc ribbon domain, which are structurally connected by a flexible linker. We show that amino acid residues required for substrate binding reside in the PIN domain whereas the zinc ribbon domain alone is sufficient to bind helix 40 of the small subunit rRNA. This suggests that the zinc ribbon domain acts as an anchor point for the protein on the nascent subunit positioning it in the proximity of the cleavage site.

Structural and functional analysis of the archaeal endonuclease Nob1.,Veith T, Martin R, Wurm JP, Weis BL, Duchardt-Ferner E, Safferthal C, Hennig R, Mirus O, Bohnsack MT, Wohnert J, Schleiff E Nucleic Acids Res. 2012 Apr 1;40(7):3259-74. Epub 2011 Dec 10. PMID:22156373[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Veith T, Martin R, Wurm JP, Weis BL, Duchardt-Ferner E, Safferthal C, Hennig R, Mirus O, Bohnsack MT, Wohnert J, Schleiff E. Structural and functional analysis of the archaeal endonuclease Nob1. Nucleic Acids Res. 2012 Apr 1;40(7):3259-74. Epub 2011 Dec 10. PMID:22156373 doi:10.1093/nar/gkr1186
  2. Veith T, Martin R, Wurm JP, Weis BL, Duchardt-Ferner E, Safferthal C, Hennig R, Mirus O, Bohnsack MT, Wohnert J, Schleiff E. Structural and functional analysis of the archaeal endonuclease Nob1. Nucleic Acids Res. 2012 Apr 1;40(7):3259-74. Epub 2011 Dec 10. PMID:22156373 doi:10.1093/nar/gkr1186
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA