3oj4

From Proteopedia
Revision as of 13:45, 18 May 2022 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal structure of the A20 ZnF4, ubiquitin and UbcH5A complexCrystal structure of the A20 ZnF4, ubiquitin and UbcH5A complex

Structural highlights

3oj4 is a 6 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:UBE2D1, SFT, UBC5A, UBCH5, UBCH5A (HUMAN), UBB (HUMAN), TNFAIP3, OTUD7C (HUMAN)
Activity:Ubiquitin--protein ligase, with EC number 6.3.2.19
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[UB2D1_HUMAN] Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes 'Lys-48'-linked polyubiquitination. Mediates the selective degradation of short-lived and abnormal proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Mediates ubiquitination of PEX5 and auto-ubiquitination of STUB1, TRAF6 and TRIM63/MURF1. Ubiquitinates STUB1-associated HSP90AB1 in vitro. Lacks inherent specificity for any particular lysine residue of ubiquitin. Essential for viral activation of IRF3. Mediates polyubiquitination of CYP3A4.[1] [2] [3] [4] [5] [TNAP3_HUMAN] Ubiquitin-editing enzyme that contains both ubiquitin ligase and deubiquitinase activities. Involved in immune and inflammatory responses signaled by cytokines, such as TNF-alpha and IL-1 beta, or pathogens via Toll-like receptors (TLRs) through terminating NF-kappa-B activity. Essential component of a ubiquitin-editing protein complex, comprising also RNF11, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. In cooperation with TAX1BP1 promotes disassembly of E2-E3 ubiquitin protein ligase complexes in IL-1R and TNFR-1 pathways; affected are at least E3 ligases TRAF6, TRAF2 and BIRC2, and E2 ubiquitin-conjugating enzymes UBE2N and UBE2D3. In cooperation with TAX1BP1 promotes ubiquitination of UBE2N and proteasomal degradation of UBE2N and UBE2D3. Upon TNF stimulation, deubiquitinates 'Lys-63'-polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Deubiquinates TRAF6 probably acting on 'Lys-63'-linked polyubiquitin. Upon T-cell receptor (TCR)-mediated T-cell activation, deubiquitinates 'Lys-63'-polyubiquitin chains on MALT1 thereby mediating disassociation of the CBM (CARD11:BCL10:MALT1) and IKK complexes and preventing sustained IKK activation. Deubiquinates NEMO/IKBKG; the function is facilitated by TNIP1 and leads to inhibition of NF-kappa-B activation. Upon stimulation by bacterial peptidoglycans, probably deubiquitinates RIPK2. Can also inhibit I-kappa-B-kinase (IKK) through a non-catalytic mechanism which involves polyubiquitin; polyubiquitin promotes association with IKBKG and prevents IKK MAP3K7-mediated phosphorylation. Targets TRAF2 for lysosomal degradation. In vitro able to deubiquitinate both 'Lys-48'- and 'Lys-63' polyubiquitin chains. Inhibitor of programmed cell death. Has a role in the function of the lymphoid system.[6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [UBB_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[17] [18]

Publication Abstract from PubMed

Inactivating mutations in the ubiquitin (Ub) editing protein A20 promote persistent nuclear factor (NF)-kappaB signaling and are genetically linked to inflammatory diseases and hematologic cancers. A20 tightly regulates NF-kappaB signaling by acting as an Ub editor, removing K63-linked Ub chains and mediating addition of Ub chains that target substrates for degradation. However, a precise molecular understanding of how A20 modulates this pathway remains elusive. Here, using structural analysis, domain mapping, and functional assays, we show that A20 zinc finger 4 (ZnF4) does not directly interact with E2 enzymes but instead can bind mono-Ub and K63-linked poly-Ub. Mutations to the A20 ZnF4 Ub-binding surface result in decreased A20-mediated ubiquitination and impaired regulation of NF-kappaB signaling. Collectively, our studies illuminate the mechanistically distinct but biologically interdependent activities of the A20 ZnF and ovarian tumor (OTU) domains that are inherent to the Ub editing process and, ultimately, to regulation of NF-kappaB signaling.

Ubiquitin Binding to A20 ZnF4 Is Required for Modulation of NF-kappaB Signaling.,Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C, Phu L, Phung Q, Maurer B, Arnott D, Kirkpatrick DS, Dixit VM, Hymowitz SG Mol Cell. 2010 Nov 24;40(4):548-57. PMID:21095585[19]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Windheim M, Peggie M, Cohen P. Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem J. 2008 Feb 1;409(3):723-9. PMID:18042044 doi:10.1042/BJ20071338
  2. Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, Meyer HE, Warscheid B, Sa-Miranda C, Azevedo JE. Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J Biol Chem. 2008 May 23;283(21):14190-7. doi: 10.1074/jbc.M800402200. Epub 2008 , Mar 22. PMID:18359941 doi:10.1074/jbc.M800402200
  3. Pabarcus MK, Hoe N, Sadeghi S, Patterson C, Wiertz E, Correia MA. CYP3A4 ubiquitination by gp78 (the tumor autocrine motility factor receptor, AMFR) and CHIP E3 ligases. Arch Biochem Biophys. 2009 Mar 1;483(1):66-74. doi: 10.1016/j.abb.2008.12.001., Epub 2008 Dec 10. PMID:19103148 doi:10.1016/j.abb.2008.12.001
  4. Zeng W, Xu M, Liu S, Sun L, Chen ZJ. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell. 2009 Oct 23;36(2):315-25. doi: 10.1016/j.molcel.2009.09.037. PMID:19854139 doi:10.1016/j.molcel.2009.09.037
  5. David Y, Ziv T, Admon A, Navon A. The E2 ubiquitin conjugating enzymes direct polyubiquitination to preferred lysines. J Biol Chem. 2010 Jan 8. PMID:20061386 doi:M109.089003
  6. Song HY, Rothe M, Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6721-5. PMID:8692885
  7. De Valck D, Heyninck K, Van Criekinge W, Vandenabeele P, Fiers W, Beyaert R. A20 inhibits NF-kappaB activation independently of binding to 14-3-3 proteins. Biochem Biophys Res Commun. 1997 Sep 18;238(2):590-4. PMID:9299557 doi:10.1006/bbrc.1997.7343
  8. Eliopoulos AG, Blake SM, Floettmann JE, Rowe M, Young LS. Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol. 1999 Feb;73(2):1023-35. PMID:9882303
  9. Evans PC, Ovaa H, Hamon M, Kilshaw PJ, Hamm S, Bauer S, Ploegh HL, Smith TS. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J. 2004 Mar 15;378(Pt 3):727-34. PMID:14748687 doi:10.1042/BJ20031377
  10. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004 Aug 5;430(7000):694-9. Epub 2004 Jul 18. PMID:15258597 doi:10.1038/nature02794
  11. Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A, Acquaviva R, Formisano S, Vito P, Leonardi A. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem. 2006 Jul 7;281(27):18482-8. Epub 2006 May 9. PMID:16684768 doi:10.1074/jbc.M601502200
  12. Li L, Soetandyo N, Wang Q, Ye Y. The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta. 2009 Feb;1793(2):346-53. doi: 10.1016/j.bbamcr.2008.09.013., Epub 2008 Oct 8. PMID:18952128 doi:10.1016/j.bbamcr.2008.09.013
  13. Duwel M, Welteke V, Oeckinghaus A, Baens M, Kloo B, Ferch U, Darnay BG, Ruland J, Marynen P, Krappmann D. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J Immunol. 2009 Jun 15;182(12):7718-28. doi: 10.4049/jimmunol.0803313. PMID:19494296 doi:10.4049/jimmunol.0803313
  14. Skaug B, Chen J, Du F, He J, Ma A, Chen ZJ. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol Cell. 2011 Nov 18;44(4):559-71. doi: 10.1016/j.molcel.2011.09.015. PMID:22099304 doi:10.1016/j.molcel.2011.09.015
  15. Komander D, Barford D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem J. 2008 Jan 1;409(1):77-85. PMID:17961127 doi:10.1042/BJ20071399
  16. Lin SC, Chung JY, Lamothe B, Rajashankar K, Lu M, Lo YC, Lam AY, Darnay BG, Wu H. Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20. J Mol Biol. 2008 Feb 15;376(2):526-40. Epub 2007 Dec 4. PMID:18164316 doi:http://dx.doi.org/10.1016/j.jmb.2007.11.092
  17. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
  18. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
  19. Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C, Phu L, Phung Q, Maurer B, Arnott D, Kirkpatrick DS, Dixit VM, Hymowitz SG. Ubiquitin Binding to A20 ZnF4 Is Required for Modulation of NF-kappaB Signaling. Mol Cell. 2010 Nov 24;40(4):548-57. PMID:21095585 doi:10.1016/j.molcel.2010.10.009

3oj4, resolution 3.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA