5f0m

From Proteopedia
Revision as of 11:38, 12 July 2023 by OCA (talk | contribs)
Jump to navigation Jump to search

Structure of retromer VPS26-VPS35 subunits bound to SNX3 and DMT1 (SeMet labeled)Structure of retromer VPS26-VPS35 subunits bound to SNX3 and DMT1 (SeMet labeled)

Structural highlights

5f0m is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.1Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

SNX3_HUMAN MMEP syndrome. The gene represented in this entry may be involved in disease pathogenesis. A chromosomal aberration involving SNX3 has been found in patients with syndromic microphthalmia. Translocation t(6;13)(q21;q12).

Function

SNX3_HUMAN Phosphoinositide-binding protein required for multivesicular body formation. Specifically binds phosphatidylinositol 3-phosphate (PtdIns(P3)). Plays a role in protein transport between cellular compartments. Promotes stability and cell surface expression of epithelial sodium channel (ENAC) subunits SCNN1A and SCNN1G (By similarity). Not involved in EGFR degradation.[1] [2]

Publication Abstract from PubMed

Retromer is a multi-protein complex that recycles transmembrane cargo from endosomes to the trans-Golgi network and the plasma membrane. Defects in retromer impair various cellular processes and underlie some forms of Alzheimer's disease and Parkinson's disease. Although retromer was discovered over 15 years ago, the mechanisms for cargo recognition and recruitment to endosomes have remained elusive. Here, we present an X-ray crystallographic analysis of a four-component complex comprising the VPS26 and VPS35 subunits of retromer, the sorting nexin SNX3, and a recycling signal from the divalent cation transporter DMT1-II. This analysis identifies a binding site for canonical recycling signals at the interface between VPS26 and SNX3. In addition, the structure highlights a network of cooperative interactions among the VPS subunits, SNX3, and cargo that couple signal-recognition to membrane recruitment.

Structural Mechanism for Cargo Recognition by the Retromer Complex.,Lucas M, Gershlick DC, Vidaurrazaga A, Rojas AL, Bonifacino JS, Hierro A Cell. 2016 Dec 1;167(6):1623-1635.e14. doi: 10.1016/j.cell.2016.10.056. Epub 2016, Nov 23. PMID:27889239[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Xu Y, Hortsman H, Seet L, Wong SH, Hong W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat Cell Biol. 2001 Jul;3(7):658-66. PMID:11433298 doi:http://dx.doi.org/10.1038/35083051
  2. Pons V, Luyet PP, Morel E, Abrami L, van der Goot FG, Parton RG, Gruenberg J. Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies. PLoS Biol. 2008 Sep 2;6(9):e214. doi: 10.1371/journal.pbio.0060214. PMID:18767904 doi:http://dx.doi.org/10.1371/journal.pbio.0060214
  3. Lucas M, Gershlick DC, Vidaurrazaga A, Rojas AL, Bonifacino JS, Hierro A. Structural Mechanism for Cargo Recognition by the Retromer Complex. Cell. 2016 Dec 1;167(6):1623-1635.e14. doi: 10.1016/j.cell.2016.10.056. Epub 2016, Nov 23. PMID:27889239 doi:http://dx.doi.org/10.1016/j.cell.2016.10.056

5f0m, resolution 3.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA