Structure of Human Transferrin Receptor-Transferrin ComplexStructure of Human Transferrin Receptor-Transferrin Complex

Structural highlights

1suv is a 6 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:TFRC (HUMAN), TF (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Disease

[TRFE_HUMAN] Defects in TF are the cause of atransferrinemia (ATRAF) [MIM:209300]. Atransferrinemia is rare autosomal recessive disorder characterized by iron overload and hypochromic anemia.[1] [2]

Function

[TFR1_HUMAN] Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with transferrin for an overlapping C-terminal binding site.[3] [TRFE_HUMAN] Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Iron, insoluble as free Fe(3+) and toxic as free Fe(2+), is distributed through the body as Fe(3+) bound to transferrin (Tf) for delivery to cells by endocytosis of its complex with transferrin receptor (TfR). Although much is understood of the transferrin endocytotic cycle, little has been uncovered of the molecular details underlying the formation of the receptor-transferrin complex. Using cryo-electron microscopy, we have produced a density map of the TfR-Tf complex at subnanometer resolution. An atomic model, obtained by fitting crystal structures of diferric Tf and the receptor ectodomain into the map, shows that the Tf N-lobe is sandwiched between the membrane and the TfR ectodomain and that the C-lobe abuts the receptor helical domain. When Tf binds receptor, its N-lobe moves by about 9 A with respect to its C-lobe. The structure of TfR-Tf complex helps account for known differences in the iron-release properties of free and receptor bound Tf.

Structure of the human transferrin receptor-transferrin complex.,Cheng Y, Zak O, Aisen P, Harrison SC, Walz T Cell. 2004 Feb 20;116(4):565-76. PMID:14980223[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Beutler E, Gelbart T, Lee P, Trevino R, Fernandez MA, Fairbanks VF. Molecular characterization of a case of atransferrinemia. Blood. 2000 Dec 15;96(13):4071-4. PMID:11110675
  2. Knisely AS, Gelbart T, Beutler E. Molecular characterization of a third case of human atransferrinemia. Blood. 2004 Oct 15;104(8):2607. PMID:15466165 doi:10.1182/blood-2004-05-1751
  3. Rothenberger S, Iacopetta BJ, Kuhn LC. Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site. Cell. 1987 May 8;49(3):423-31. PMID:3568132
  4. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. Structure of the human transferrin receptor-transferrin complex. Cell. 2004 Feb 20;116(4):565-76. PMID:14980223

1suv, resolution 7.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA