X-RAY CRYSTALLOGRAPHIC STRUCTURES OF D-XYLOSE ISOMERASE-SUBSTRATE COMPLEXES POSITION THE SUBSTRATE AND PROVIDE EVIDENCE FOR METAL MOVEMENT DURING CATALYSISX-RAY CRYSTALLOGRAPHIC STRUCTURES OF D-XYLOSE ISOMERASE-SUBSTRATE COMPLEXES POSITION THE SUBSTRATE AND PROVIDE EVIDENCE FOR METAL MOVEMENT DURING CATALYSIS

Structural highlights

1xyc is a 2 chain structure with sequence from Streptomyces olivochromogenes. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:Xylose isomerase, with EC number 5.3.1.5
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The X-ray crystallographic structures of the metal-activated enzyme xylose isomerase from Streptomyces olivochromogenes with the substrates D-glucose, 3-O-methyl-D-glucose and in the absence of substrate were determined to 1.96-, 2.19-, and 1.81-A resolution and refined to R-factors of 16.6%, 15.9%, and 16.1%, respectively. Xylose isomerase catalyzes the interconversion between glucose and fructose (xylose and xylulose under physiological conditions) by utilizing two metal cofactors to promote a hydride shift; the metals are bridged by a glutamate residue. This puts xylose isomerase in the small but rapidly growing family of enzymes with a bridged bimetallic active site, in which both metals are involved in the chemical transformation. The substrate 3-O-methylglucose was chosen in order to position the glucose molecule in the observed electron density unambiguously. Of the two essential magnesium ions per active site, Mg-2 was observed to occupy two alternate positions, separated by 1.8 A, in the substrate-soaked structures. The deduced movement was not observed in the structure without substrate present and is attributed to a step following substrate binding but prior to isomerization. The substrates glucose and 3-O-methylglucose are observed in their linear extended forms and make identical interactions with the enzyme by forming ligands to Mg-1 through O2 and O4 and by forming hydrogen bonds with His53 through O5 and Lys182 through O1. Mg-2 has a water ligand that is interpreted in the crystal structure in the absence of substrate as a hydroxide ion and in the presence of substrate as a water molecule. This hydroxide ion may act as a base to deprotonate the glucose O2 and subsequently protonate the product fructose O1 concomitant with hydride transfer. Calculations of the solvent-accessible surface of possible dimers, with and without the alpha-helical C-terminal domain, suggest that the tetramer is the active form of this xylose isomerase.

X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis.,Lavie A, Allen KN, Petsko GA, Ringe D Biochemistry. 1994 May 10;33(18):5469-80. PMID:8180169[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lavie A, Allen KN, Petsko GA, Ringe D. X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry. 1994 May 10;33(18):5469-80. PMID:8180169

1xyc, resolution 2.19Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA