6yi1: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='6yi1' size='340' side='right'caption='[[6yi1]], [[Resolution|resolution]] 1.92&Aring;' scene=''>
<StructureSection load='6yi1' size='340' side='right'caption='[[6yi1]], [[Resolution|resolution]] 1.92&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6yi1]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6YI1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6YI1 FirstGlance]. <br>
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6YI1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6YI1 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.92&#8491;</td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.92&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DIO:1,4-DIETHYLENE+DIOXIDE'>DIO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene>, <scene name='pdbligand=ORT:(4~{S})-4-azanyl-5-oxidanylidene-pentanehydrazide'>ORT</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=66N:L-ALANINAMIDE'>66N</scene>, <scene name='pdbligand=DIO:1,4-DIETHYLENE+DIOXIDE'>DIO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=ORT:(4~{S})-4-azanyl-5-oxidanylidene-pentanehydrazide'>ORT</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene>, <scene name='pdbligand=PHE:PHENYLALANINE'>PHE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6yi1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6yi1 OCA], [https://pdbe.org/6yi1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6yi1 RCSB], [https://www.ebi.ac.uk/pdbsum/6yi1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6yi1 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6yi1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6yi1 OCA], [https://pdbe.org/6yi1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6yi1 RCSB], [https://www.ebi.ac.uk/pdbsum/6yi1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6yi1 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
<div style="background-color:#fffaf0;">
[https://www.uniprot.org/uniprot/QPCT_HUMAN QPCT_HUMAN] Responsible for the biosynthesis of pyroglutamyl peptides. Has a bias against acidic and tryptophan residues adjacent to the N-terminal glutaminyl residue and a lack of importance of chain length after the second residue. Also catalyzes N-terminal pyroglutamate formation. In vitro, catalyzes pyroglutamate formation of N-terminally truncated form of APP amyloid-beta peptides [Glu-3]-beta-amyloid. May be involved in the N-terminal pyroglutamate formation of several amyloid-related plaque-forming peptides.<ref>PMID:15063747</ref> <ref>PMID:18486145</ref> <ref>PMID:21288892</ref>  
== Publication Abstract from PubMed ==
Amyloidogenic plaques are hallmarks of Alzheimer's disease (AD) and typically consist of high percentages of modified Abeta peptides bearing N-terminally cyclized glutamate residues. The human zinc(II) enzyme glutaminyl cyclase (QC) was shown in vivo to catalyze the cyclization of N-terminal glutamates of Abeta peptides in a pathophysiological side reaction establishing QC as a druggable target for therapeutic treatment of AD. Here, we report crystallographic snapshots of human QC catalysis acting on the neurohormone neurotensin that delineate the stereochemical course of catalysis and suggest that hydrazides could mimic the transition state of peptide cyclization and deamidation. This hypothesis is validated by a sparse-matrix inhibitor screening campaign that identifies hydrazides as the most potent metal-binding group compared to classic Zn binders. The structural basis of hydrazide inhibition is illuminated by X-ray structure analysis of human QC in complex with a hydrazide-bearing peptide inhibitor and reveals a pentacoordinated Zn complex. Our findings inform novel strategies in the design of potent and highly selective QC inhibitors by employing hydrazides as the metal-binding warhead.
 
Hydrazides Are Potent Transition-State Analogues for Glutaminyl Cyclase Implicated in the Pathogenesis of Alzheimer's Disease.,Kupski O, Funk LM, Sautner V, Seifert F, Worbs B, Ramsbeck D, Meyer F, Diederichsen U, Buchholz M, Schilling S, Demuth HU, Tittmann K Biochemistry. 2020 Jun 29. doi: 10.1021/acs.biochem.0c00337. PMID:32551535<ref>PMID:32551535</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6yi1" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 17: Line 24:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Synthetic construct]]
[[Category: Kupski O]]
[[Category: Kupski O]]
[[Category: Sautner V]]
[[Category: Sautner V]]
[[Category: Tittmann K]]
[[Category: Tittmann K]]

Latest revision as of 11:53, 14 July 2024

Crystal structure of human glutaminyl cyclase in complex with Glu(gamma-hydrazide)-Phe-AlaCrystal structure of human glutaminyl cyclase in complex with Glu(gamma-hydrazide)-Phe-Ala

Structural highlights

Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.92Å
Ligands:, , , , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Amyloidogenic plaques are hallmarks of Alzheimer's disease (AD) and typically consist of high percentages of modified Abeta peptides bearing N-terminally cyclized glutamate residues. The human zinc(II) enzyme glutaminyl cyclase (QC) was shown in vivo to catalyze the cyclization of N-terminal glutamates of Abeta peptides in a pathophysiological side reaction establishing QC as a druggable target for therapeutic treatment of AD. Here, we report crystallographic snapshots of human QC catalysis acting on the neurohormone neurotensin that delineate the stereochemical course of catalysis and suggest that hydrazides could mimic the transition state of peptide cyclization and deamidation. This hypothesis is validated by a sparse-matrix inhibitor screening campaign that identifies hydrazides as the most potent metal-binding group compared to classic Zn binders. The structural basis of hydrazide inhibition is illuminated by X-ray structure analysis of human QC in complex with a hydrazide-bearing peptide inhibitor and reveals a pentacoordinated Zn complex. Our findings inform novel strategies in the design of potent and highly selective QC inhibitors by employing hydrazides as the metal-binding warhead.

Hydrazides Are Potent Transition-State Analogues for Glutaminyl Cyclase Implicated in the Pathogenesis of Alzheimer's Disease.,Kupski O, Funk LM, Sautner V, Seifert F, Worbs B, Ramsbeck D, Meyer F, Diederichsen U, Buchholz M, Schilling S, Demuth HU, Tittmann K Biochemistry. 2020 Jun 29. doi: 10.1021/acs.biochem.0c00337. PMID:32551535[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kupski O, Funk LM, Sautner V, Seifert F, Worbs B, Ramsbeck D, Meyer F, Diederichsen U, Buchholz M, Schilling S, Demuth HU, Tittmann K. Hydrazides Are Potent Transition-State Analogues for Glutaminyl Cyclase Implicated in the Pathogenesis of Alzheimer's Disease. Biochemistry. 2020 Jul 21;59(28):2585-2591. PMID:32551535 doi:10.1021/acs.biochem.0c00337

6yi1, resolution 1.92Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA