2q9i: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 9: Line 9:
</table>
</table>
== Disease ==
== Disease ==
[https://www.uniprot.org/uniprot/FIBA_HUMAN FIBA_HUMAN] Defects in FGA are a cause of congenital afibrinogenemia (CAFBN) [MIM:[https://omim.org/entry/202400 202400]. This is a rare autosomal recessive disorder characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Note=The majority of cases of afibrinogenemia are due to truncating mutations. Variations in position Arg-35 (the site of cleavage of fibrinopeptide a by thrombin) leads to alpha-dysfibrinogenemias.  Defects in FGA are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8097946</ref>
[https://www.uniprot.org/uniprot/FIBG_HUMAN FIBG_HUMAN] Defects in FGG are a cause of congenital afibrinogenemia (CAFBN) [MIM:[https://omim.org/entry/202400 202400]. This rare autosomal recessive disorder is characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Note=Patients with congenital fibrinogen abnormalities can manifest different clinical pictures. Some cases are clinically silent, some show a tendency toward bleeding and some show a predisposition for thrombosis with or without bleeding.
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/FIBA_HUMAN FIBA_HUMAN] Fibrinogen has a double function: yielding monomers that polymerize into fibrin and acting as a cofactor in platelet aggregation.
[https://www.uniprot.org/uniprot/FIBG_HUMAN FIBG_HUMAN] Fibrinogen has a double function: yielding monomers that polymerize into fibrin and acting as a cofactor in platelet aggregation.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 17: Line 17:
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q9/2q9i_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q9/2q9i_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>

Latest revision as of 12:26, 6 November 2024

Crystal Structure of D-Dimer from Human Fibrin Complexed with Met-His-Arg-Pro-Tyr-amide.Crystal Structure of D-Dimer from Human Fibrin Complexed with Met-His-Arg-Pro-Tyr-amide.

Structural highlights

2q9i is a 10 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

FIBG_HUMAN Defects in FGG are a cause of congenital afibrinogenemia (CAFBN) [MIM:202400. This rare autosomal recessive disorder is characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Note=Patients with congenital fibrinogen abnormalities can manifest different clinical pictures. Some cases are clinically silent, some show a tendency toward bleeding and some show a predisposition for thrombosis with or without bleeding.

Function

FIBG_HUMAN Fibrinogen has a double function: yielding monomers that polymerize into fibrin and acting as a cofactor in platelet aggregation.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In a recent report, we showed that alanine can replace glycine at the amino terminus of synthetic B-knobs that bind to human fibrin(ogen). We now report a survey of 13 synthetic peptides with the general sequence XHRPYam, all tested with regard to their ability to delay fibrinolysis in an in vitro system activated by t-PA, the results being used as measures of binding affinity to the betaC hole. Unexpectedly, some large and bulky amino acids, including methionine and arginine, are effective binders. Amino acids that branch at the beta carbon (valine, isoleucine, and threonine) do not bind effectively. Crystal structures were determined for two of the peptides (GHRPYam and MHRPYam) complexed with fibrin fragment D-dimer; the modeling of various other side chains showed clashing in the cases of beta-carbon substituents. The two crystal structures also showed that the enhanced binding observed with pentapeptides with carboxyl-terminal tyrosine, compared with that of their tetrapeptide equivalents, is attributable to an interaction between the tyrosine side chain and a guanidino group of a nearby arginine (beta406). The equivalent position in gamma-chains of human fibrin(ogen) is occupied by a lysine (gamma338), but in chicken and lamprey fibrin(ogen), it is an arginine, just as occurs in beta chains. Accordingly, the peptides GPRPam and GPRPYam, which are surrogate A-knobs, were tested for their influence on fibrin polymerization with fibrinogen from lamprey and humans. In lampreys, GPRPYam is a significantly better inhibitor, but in humans, it is less effective than GPRPam, indicating that in the lamprey system the same tyrosine-arginine interaction can also occur in the gamma-chain setting.

Probing the beta-chain hole of fibrinogen with synthetic peptides that differ at their amino termini.,Doolittle RF, Pandi L Biochemistry. 2007 Sep 4;46(35):10033-8. Epub 2007 Aug 10. PMID:17688324[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Doolittle RF, Pandi L. Probing the beta-chain hole of fibrinogen with synthetic peptides that differ at their amino termini. Biochemistry. 2007 Sep 4;46(35):10033-8. Epub 2007 Aug 10. PMID:17688324 doi:http://dx.doi.org/10.1021/bi7010916

2q9i, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA