|
|
Line 3: |
Line 3: |
| <StructureSection load='1jpl' size='340' side='right'caption='[[1jpl]], [[Resolution|resolution]] 2.40Å' scene=''> | | <StructureSection load='1jpl' size='340' side='right'caption='[[1jpl]], [[Resolution|resolution]] 2.40Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[1jpl]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JPL OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1JPL FirstGlance]. <br> | | <table><tr><td colspan='2'>[[1jpl]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JPL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JPL FirstGlance]. <br> |
| </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4Å</td></tr> |
| <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1elk|1elk]], [[1dvp|1dvp]], [[1juq|1juq]]</div></td></tr>
| | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
| <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GGA3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jpl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jpl OCA], [https://pdbe.org/1jpl PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jpl RCSB], [https://www.ebi.ac.uk/pdbsum/1jpl PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jpl ProSAT]</span></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1jpl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jpl OCA], [http://pdbe.org/1jpl PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1jpl RCSB], [http://www.ebi.ac.uk/pdbsum/1jpl PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1jpl ProSAT]</span></td></tr> | |
| </table> | | </table> |
| == Function == | | == Function == |
| [[http://www.uniprot.org/uniprot/GGA3_HUMAN GGA3_HUMAN]] Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (AC-LL) motif.<ref>PMID:11301005</ref> [[http://www.uniprot.org/uniprot/MPRI_HUMAN MPRI_HUMAN]] Transport of phosphorylated lysosomal enzymes from the Golgi complex and the cell surface to lysosomes. Lysosomal enzymes bearing phosphomannosyl residues bind specifically to mannose-6-phosphate receptors in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelyosomal compartment where the low pH mediates the dissociation of the complex. This receptor also binds IGF2. Acts as a positive regulator of T-cell coactivation, by binding DPP4.<ref>PMID:10900005</ref> | | [https://www.uniprot.org/uniprot/MPRI_HUMAN MPRI_HUMAN] Transport of phosphorylated lysosomal enzymes from the Golgi complex and the cell surface to lysosomes. Lysosomal enzymes bearing phosphomannosyl residues bind specifically to mannose-6-phosphate receptors in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelyosomal compartment where the low pH mediates the dissociation of the complex. This receptor also binds IGF2. Acts as a positive regulator of T-cell coactivation, by binding DPP4.<ref>PMID:10900005</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 21: |
Line 20: |
| </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jpl ConSurf]. | | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jpl ConSurf]. |
| <div style="clear:both"></div> | | <div style="clear:both"></div> |
| <div style="background-color:#fffaf0;">
| |
| == Publication Abstract from PubMed ==
| |
| Specific sorting signals direct transmembrane proteins to the compartments of the endosomal-lysosomal system. Acidic-cluster-dileucine signals present within the cytoplasmic tails of sorting receptors, such as the cation-independent and cation-dependent mannose-6-phosphate receptors, are recognized by the GGA (Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding) proteins. The VHS (Vps27p, Hrs and STAM) domains of the GGA proteins are responsible for the highly specific recognition of these acidic-cluster-dileucine signals. Here we report the structures of the VHS domain of human GGA3 complexed with signals from both mannose-6-phosphate receptors. The signals bind in an extended conformation to helices 6 and 8 of the VHS domain. The structures highlight an Asp residue separated by two residues from a dileucine sequence as critical recognition elements. The side chains of the Asp-X-X-Leu-Leu sequence interact with subsites consisting of one electropositive and two shallow hydrophobic pockets, respectively. The rigid spatial alignment of the three binding subsites leads to high specificity.
| |
|
| |
| Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains.,Misra S, Puertollano R, Kato Y, Bonifacino JS, Hurley JH Nature. 2002 Feb 21;415(6874):933-7. PMID:11859375<ref>PMID:11859375</ref>
| |
|
| |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| |
| </div>
| |
| <div class="pdbe-citations 1jpl" style="background-color:#fffaf0;"></div>
| |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| [[Category: Human]] | | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Bonifacino, J S]] | | [[Category: Bonifacino JS]] |
| [[Category: Hurley, J H]] | | [[Category: Hurley JH]] |
| [[Category: Misra, S]] | | [[Category: Misra S]] |
| [[Category: Puertollano, R]] | | [[Category: Puertollano R]] |
| [[Category: Dxxll sorting signal]]
| |
| [[Category: Protein-peptide complex]]
| |
| [[Category: Signaling protein]]
| |
| [[Category: Vhs domain]]
| |