3pe4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='3pe4' size='340' side='right'caption='[[3pe4]], [[Resolution|resolution]] 1.95&Aring;' scene=''>
<StructureSection load='3pe4' size='340' side='right'caption='[[3pe4]], [[Resolution|resolution]] 1.95&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3pe4]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. The September 2011 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''O-GlcNAc Transferase''  by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2011_9 10.2210/rcsb_pdb/mom_2011_9]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PE4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3PE4 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3pe4]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The September 2011 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''O-GlcNAc Transferase''  by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2011_9 10.2210/rcsb_pdb/mom_2011_9]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PE4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3PE4 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.95&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3pe3|3pe3]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">OGT ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3pe4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3pe4 OCA], [https://pdbe.org/3pe4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3pe4 RCSB], [https://www.ebi.ac.uk/pdbsum/3pe4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3pe4 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3pe4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3pe4 OCA], [https://pdbe.org/3pe4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3pe4 RCSB], [https://www.ebi.ac.uk/pdbsum/3pe4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3pe4 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/OGT1_HUMAN OGT1_HUMAN]] Regulation of OGT activity and altered O-GlcNAcylations are implicated in diabetes and Alzheimer disease. O-GlcNAcylation of AKT1 affects insulin signaling and, possibly diabetes. Reduced O-GlcNAcylations and resulting increased phosphorylations of MAPT/TAU are observed in Alzheimer disease (AD) brain cerebrum.  
[https://www.uniprot.org/uniprot/OGT1_HUMAN OGT1_HUMAN] Regulation of OGT activity and altered O-GlcNAcylations are implicated in diabetes and Alzheimer disease. O-GlcNAcylation of AKT1 affects insulin signaling and, possibly diabetes. Reduced O-GlcNAcylations and resulting increased phosphorylations of MAPT/TAU are observed in Alzheimer disease (AD) brain cerebrum.
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/OGT1_HUMAN OGT1_HUMAN]] Catalyzes the transfer of a single N-acetylglucosamine from UDP-GlcNAc to a serine or threonine residue in cytoplasmic and nuclear proteins resulting in their modification with a beta-linked N-acetylglucosamine (O-GlcNAc). Glycosylates a large and diverse number of proteins including histone H2B, AKT1, PFKL, KMT2E/MLL5, MAPT/TAU and HCFC1. Can regulate their cellular processes via cross-talk between glycosylation and phosphorylation or by affecting proteolytic processing. Involved in insulin resistance in muscle and adipocyte cells via glycosylating insulin signaling components and inhibiting the 'Thr-308' phosphorylation of AKT1, enhancing IRS1 phosphorylation and attenuating insulin signaling. Involved in glycolysis regulation by mediating glycosylation of 6-phosphofructokinase PFKL, inhibiting its activity. Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. Plays a key role in chromatin structure by mediating O-GlcNAcylation of 'Ser-112' of histone H2B: recruited to CpG-rich transcription start sites of active genes via its interaction with TET proteins (TET1, TET2 or TET3). As part of the NSL complex indirectly involved in acetylation of nucleosomal histone H4 on several lysine residues.<ref>PMID:12150998</ref> <ref>PMID:18288188</ref> <ref>PMID:19451179</ref> <ref>PMID:19377461</ref> <ref>PMID:20018852</ref> <ref>PMID:20018868</ref> <ref>PMID:20200153</ref> <ref>PMID:20824293</ref> <ref>PMID:21285374</ref> <ref>PMID:22121020</ref> <ref>PMID:22923583</ref> <ref>PMID:23353889</ref> <ref>PMID:23222540</ref> <ref>PMID:15361863</ref> <ref>PMID:21240259</ref>  Isoform 2: the mitochondrial isoform (mOGT) is cytotoxic and triggers apoptosis in several cell types including INS1, an insulinoma cell line.<ref>PMID:12150998</ref> <ref>PMID:18288188</ref> <ref>PMID:19451179</ref> <ref>PMID:19377461</ref> <ref>PMID:20018852</ref> <ref>PMID:20018868</ref> <ref>PMID:20200153</ref> <ref>PMID:20824293</ref> <ref>PMID:21285374</ref> <ref>PMID:22121020</ref> <ref>PMID:22923583</ref> <ref>PMID:23353889</ref> <ref>PMID:23222540</ref> <ref>PMID:15361863</ref> <ref>PMID:21240259</ref>  [[https://www.uniprot.org/uniprot/CSK21_HUMAN CSK21_HUMAN]] Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage. Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation. Can also negatively regulate apoptosis. Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3. Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8. Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV. Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB. Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function. Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1. Acts as an ectokinase that phosphorylates several extracellular proteins. During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV.<ref>PMID:11239457</ref> <ref>PMID:11704824</ref> <ref>PMID:16193064</ref> <ref>PMID:19188443</ref> 
[https://www.uniprot.org/uniprot/OGT1_HUMAN OGT1_HUMAN] Catalyzes the transfer of a single N-acetylglucosamine from UDP-GlcNAc to a serine or threonine residue in cytoplasmic and nuclear proteins resulting in their modification with a beta-linked N-acetylglucosamine (O-GlcNAc). Glycosylates a large and diverse number of proteins including histone H2B, AKT1, PFKL, KMT2E/MLL5, MAPT/TAU and HCFC1. Can regulate their cellular processes via cross-talk between glycosylation and phosphorylation or by affecting proteolytic processing. Involved in insulin resistance in muscle and adipocyte cells via glycosylating insulin signaling components and inhibiting the 'Thr-308' phosphorylation of AKT1, enhancing IRS1 phosphorylation and attenuating insulin signaling. Involved in glycolysis regulation by mediating glycosylation of 6-phosphofructokinase PFKL, inhibiting its activity. Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. Plays a key role in chromatin structure by mediating O-GlcNAcylation of 'Ser-112' of histone H2B: recruited to CpG-rich transcription start sites of active genes via its interaction with TET proteins (TET1, TET2 or TET3). As part of the NSL complex indirectly involved in acetylation of nucleosomal histone H4 on several lysine residues.<ref>PMID:12150998</ref> <ref>PMID:18288188</ref> <ref>PMID:19451179</ref> <ref>PMID:19377461</ref> <ref>PMID:20018852</ref> <ref>PMID:20018868</ref> <ref>PMID:20200153</ref> <ref>PMID:20824293</ref> <ref>PMID:21285374</ref> <ref>PMID:22121020</ref> <ref>PMID:22923583</ref> <ref>PMID:23353889</ref> <ref>PMID:23222540</ref> <ref>PMID:15361863</ref> <ref>PMID:21240259</ref>  Isoform 2: the mitochondrial isoform (mOGT) is cytotoxic and triggers apoptosis in several cell types including INS1, an insulinoma cell line.<ref>PMID:12150998</ref> <ref>PMID:18288188</ref> <ref>PMID:19451179</ref> <ref>PMID:19377461</ref> <ref>PMID:20018852</ref> <ref>PMID:20018868</ref> <ref>PMID:20200153</ref> <ref>PMID:20824293</ref> <ref>PMID:21285374</ref> <ref>PMID:22121020</ref> <ref>PMID:22923583</ref> <ref>PMID:23353889</ref> <ref>PMID:23222540</ref> <ref>PMID:15361863</ref> <ref>PMID:21240259</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The essential mammalian enzyme O-linked beta-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins, including numerous transcription factors, tumour suppressors, kinases, phosphatases and histone-modifying proteins. Aberrant glycosylation by OGT has been linked to insulin resistance, diabetic complications, cancer and neurodegenerative diseases including Alzheimer's. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 A resolution) and as a ternary complex with UDP and a peptide substrate (1.95 A). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT's functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.
 
Structure of human O-GlcNAc transferase and its complex with a peptide substrate.,Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S Nature. 2011 Jan 27;469(7331):564-7. Epub 2011 Jan 16. PMID:21240259<ref>PMID:21240259</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3pe4" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 29: Line 19:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: O-GlcNAc Transferase]]
[[Category: O-GlcNAc Transferase]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: Jiang, J]]
[[Category: Jiang J]]
[[Category: Lazarus, M B]]
[[Category: Lazarus MB]]
[[Category: Nam, Y]]
[[Category: Nam Y]]
[[Category: Sliz, P]]
[[Category: Sliz P]]
[[Category: Walker, S]]
[[Category: Walker S]]
[[Category: Glycosyltransferase]]
[[Category: Gt-b]]
[[Category: Transferase]]

Latest revision as of 13:40, 21 February 2024

Structure of human O-GlcNAc transferase and its complex with a peptide substrateStructure of human O-GlcNAc transferase and its complex with a peptide substrate

Structural highlights

3pe4 is a 4 chain structure with sequence from Homo sapiens. The September 2011 RCSB PDB Molecule of the Month feature on O-GlcNAc Transferase by David Goodsell is 10.2210/rcsb_pdb/mom_2011_9. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.95Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

OGT1_HUMAN Regulation of OGT activity and altered O-GlcNAcylations are implicated in diabetes and Alzheimer disease. O-GlcNAcylation of AKT1 affects insulin signaling and, possibly diabetes. Reduced O-GlcNAcylations and resulting increased phosphorylations of MAPT/TAU are observed in Alzheimer disease (AD) brain cerebrum.

Function

OGT1_HUMAN Catalyzes the transfer of a single N-acetylglucosamine from UDP-GlcNAc to a serine or threonine residue in cytoplasmic and nuclear proteins resulting in their modification with a beta-linked N-acetylglucosamine (O-GlcNAc). Glycosylates a large and diverse number of proteins including histone H2B, AKT1, PFKL, KMT2E/MLL5, MAPT/TAU and HCFC1. Can regulate their cellular processes via cross-talk between glycosylation and phosphorylation or by affecting proteolytic processing. Involved in insulin resistance in muscle and adipocyte cells via glycosylating insulin signaling components and inhibiting the 'Thr-308' phosphorylation of AKT1, enhancing IRS1 phosphorylation and attenuating insulin signaling. Involved in glycolysis regulation by mediating glycosylation of 6-phosphofructokinase PFKL, inhibiting its activity. Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. Plays a key role in chromatin structure by mediating O-GlcNAcylation of 'Ser-112' of histone H2B: recruited to CpG-rich transcription start sites of active genes via its interaction with TET proteins (TET1, TET2 or TET3). As part of the NSL complex indirectly involved in acetylation of nucleosomal histone H4 on several lysine residues.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] Isoform 2: the mitochondrial isoform (mOGT) is cytotoxic and triggers apoptosis in several cell types including INS1, an insulinoma cell line.[16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30]

See Also

References

  1. Yang X, Zhang F, Kudlow JE. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell. 2002 Jul 12;110(1):69-80. PMID:12150998
  2. Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature. 2008 Feb 21;451(7181):964-9. PMID:18288188 doi:10.1038/nature06668
  3. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain. 2009 Jul;132(Pt 7):1820-32. doi: 10.1093/brain/awp099. Epub 2009 May 18. PMID:19451179 doi:10.1093/brain/awp099
  4. Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I, Roeder RG, Kitagawa H, Kato S. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature. 2009 May 21;459(7245):455-9. Epub 2009 Apr 19. PMID:19377461 doi:nature07954
  5. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem. 2010 Feb 12;285(7):4268-72. doi: 10.1074/jbc.C109.087981. Epub 2009 , Dec 14. PMID:20018852 doi:10.1074/jbc.C109.087981
  6. Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem. 2010 Feb 19;285(8):5204-11. doi: 10.1074/jbc.M109.077818. Epub 2009 , Dec 17. PMID:20018868 doi:http://dx.doi.org/10.1074/jbc.M109.077818
  7. Mazars R, Gonzalez-de-Peredo A, Cayrol C, Lavigne AC, Vogel JL, Ortega N, Lacroix C, Gautier V, Huet G, Ray A, Monsarrat B, Kristie TM, Girard JP. The THAP-zinc finger protein THAP1 associates with coactivator HCF-1 and O-GlcNAc transferase: a link between DYT6 and DYT3 dystonias. J Biol Chem. 2010 Apr 30;285(18):13364-71. doi: 10.1074/jbc.M109.072579. Epub, 2010 Mar 3. PMID:20200153 doi:10.1074/jbc.M109.072579
  8. Shin SH, Love DC, Hanover JA. Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids. 2011 Mar;40(3):885-93. doi: 10.1007/s00726-010-0719-8. Epub 2010 Sep, 8. PMID:20824293 doi:http://dx.doi.org/10.1007/s00726-010-0719-8
  9. Daou S, Mashtalir N, Hammond-Martel I, Pak H, Yu H, Sui G, Vogel JL, Kristie TM, Affar el B. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2747-52. doi:, 10.1073/pnas.1013822108. Epub 2011 Feb 1. PMID:21285374 doi:http://dx.doi.org/10.1073/pnas.1013822108
  10. Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K, Kanno J, Ohtake F, Kitagawa H, Roeder RG, Brown M, Kato S. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature. 2011 Nov 27;480(7378):557-60. doi: 10.1038/nature10656. PMID:22121020 doi:http://dx.doi.org/10.1038/nature10656
  11. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd, Peters EC, Driggers EM, Hsieh-Wilson LC. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 2012 Aug 24;337(6097):975-80. doi: 10.1126/science.1222278. PMID:22923583 doi:http://dx.doi.org/10.1126/science.1222278
  12. Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N, Dawson MA, Volkmar M, Putmans P, Calonne E, Shih AH, Levine RL, Bernard O, Mercher T, Solary E, Urh M, Daniels DL, Fuks F. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 2013 Mar 6;32(5):645-55. doi: 10.1038/emboj.2012.357. Epub 2013 Jan 25. PMID:23353889 doi:http://dx.doi.org/10.1038/emboj.2012.357
  13. Chen Q, Chen Y, Bian C, Fujiki R, Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature. 2013 Jan 24;493(7433):561-4. doi: 10.1038/nature11742. Epub 2012 Dec 9. PMID:23222540 doi:http://dx.doi.org/10.1038/nature11742
  14. Jinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol. 2004 Oct;11(10):1001-7. Epub 2004 Sep 12. PMID:15361863 doi:10.1038/nsmb833
  15. Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature. 2011 Jan 27;469(7331):564-7. Epub 2011 Jan 16. PMID:21240259 doi:10.1038/nature09638
  16. Yang X, Zhang F, Kudlow JE. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell. 2002 Jul 12;110(1):69-80. PMID:12150998
  17. Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature. 2008 Feb 21;451(7181):964-9. PMID:18288188 doi:10.1038/nature06668
  18. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain. 2009 Jul;132(Pt 7):1820-32. doi: 10.1093/brain/awp099. Epub 2009 May 18. PMID:19451179 doi:10.1093/brain/awp099
  19. Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I, Roeder RG, Kitagawa H, Kato S. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature. 2009 May 21;459(7245):455-9. Epub 2009 Apr 19. PMID:19377461 doi:nature07954
  20. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem. 2010 Feb 12;285(7):4268-72. doi: 10.1074/jbc.C109.087981. Epub 2009 , Dec 14. PMID:20018852 doi:10.1074/jbc.C109.087981
  21. Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem. 2010 Feb 19;285(8):5204-11. doi: 10.1074/jbc.M109.077818. Epub 2009 , Dec 17. PMID:20018868 doi:http://dx.doi.org/10.1074/jbc.M109.077818
  22. Mazars R, Gonzalez-de-Peredo A, Cayrol C, Lavigne AC, Vogel JL, Ortega N, Lacroix C, Gautier V, Huet G, Ray A, Monsarrat B, Kristie TM, Girard JP. The THAP-zinc finger protein THAP1 associates with coactivator HCF-1 and O-GlcNAc transferase: a link between DYT6 and DYT3 dystonias. J Biol Chem. 2010 Apr 30;285(18):13364-71. doi: 10.1074/jbc.M109.072579. Epub, 2010 Mar 3. PMID:20200153 doi:10.1074/jbc.M109.072579
  23. Shin SH, Love DC, Hanover JA. Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids. 2011 Mar;40(3):885-93. doi: 10.1007/s00726-010-0719-8. Epub 2010 Sep, 8. PMID:20824293 doi:http://dx.doi.org/10.1007/s00726-010-0719-8
  24. Daou S, Mashtalir N, Hammond-Martel I, Pak H, Yu H, Sui G, Vogel JL, Kristie TM, Affar el B. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2747-52. doi:, 10.1073/pnas.1013822108. Epub 2011 Feb 1. PMID:21285374 doi:http://dx.doi.org/10.1073/pnas.1013822108
  25. Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K, Kanno J, Ohtake F, Kitagawa H, Roeder RG, Brown M, Kato S. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature. 2011 Nov 27;480(7378):557-60. doi: 10.1038/nature10656. PMID:22121020 doi:http://dx.doi.org/10.1038/nature10656
  26. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd, Peters EC, Driggers EM, Hsieh-Wilson LC. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 2012 Aug 24;337(6097):975-80. doi: 10.1126/science.1222278. PMID:22923583 doi:http://dx.doi.org/10.1126/science.1222278
  27. Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N, Dawson MA, Volkmar M, Putmans P, Calonne E, Shih AH, Levine RL, Bernard O, Mercher T, Solary E, Urh M, Daniels DL, Fuks F. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 2013 Mar 6;32(5):645-55. doi: 10.1038/emboj.2012.357. Epub 2013 Jan 25. PMID:23353889 doi:http://dx.doi.org/10.1038/emboj.2012.357
  28. Chen Q, Chen Y, Bian C, Fujiki R, Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature. 2013 Jan 24;493(7433):561-4. doi: 10.1038/nature11742. Epub 2012 Dec 9. PMID:23222540 doi:http://dx.doi.org/10.1038/nature11742
  29. Jinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol. 2004 Oct;11(10):1001-7. Epub 2004 Sep 12. PMID:15361863 doi:10.1038/nsmb833
  30. Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature. 2011 Jan 27;469(7331):564-7. Epub 2011 Jan 16. PMID:21240259 doi:10.1038/nature09638

3pe4, resolution 1.95Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA