1gnp: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='1gnp' size='340' side='right'caption='[[1gnp]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
<StructureSection load='1gnp' size='340' side='right'caption='[[1gnp]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1gnp]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GNP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GNP FirstGlance]. <br>
<table><tr><td colspan='2'>[[1gnp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GNP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GNP FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AGN:PHOSPHOAMINOPHOSPHONIC+ACID+3-O-(N-METHYLANTHRANILOYL-2-DEOXYGUANYLATE+ESTER'>AGN</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AGN:PHOSPHOAMINOPHOSPHONIC+ACID+3-O-(N-METHYLANTHRANILOYL-2-DEOXYGUANYLATE+ESTER'>AGN</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1gnp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gnp OCA], [https://pdbe.org/1gnp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1gnp RCSB], [https://www.ebi.ac.uk/pdbsum/1gnp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1gnp ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1gnp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gnp OCA], [https://pdbe.org/1gnp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1gnp RCSB], [https://www.ebi.ac.uk/pdbsum/1gnp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1gnp ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:[https://omim.org/entry/218040 218040]]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.<ref>PMID:16170316</ref> <ref>PMID:16329078</ref> <ref>PMID:16443854</ref> <ref>PMID:17054105</ref> <ref>PMID:18247425</ref> <ref>PMID:18039947</ref> <ref>PMID:19995790</ref>  Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:[https://omim.org/entry/218040 218040]]. CMEMS is a variant of Costello syndrome.<ref>PMID:17412879</ref>  Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:[https://omim.org/entry/607464 607464]]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms.  Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors.  Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:[https://omim.org/entry/109800 109800]]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences.  Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).<ref>PMID:1459726</ref>  Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:[https://omim.org/entry/163200 163200]]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.<ref>PMID:22683711</ref>
[https://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:[https://omim.org/entry/218040 218040]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.<ref>PMID:16170316</ref> <ref>PMID:16329078</ref> <ref>PMID:16443854</ref> <ref>PMID:17054105</ref> <ref>PMID:18247425</ref> <ref>PMID:18039947</ref> <ref>PMID:19995790</ref>  Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:[https://omim.org/entry/218040 218040]. CMEMS is a variant of Costello syndrome.<ref>PMID:17412879</ref>  Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:[https://omim.org/entry/607464 607464]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms.  Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors.  Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:[https://omim.org/entry/109800 109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences.  Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).<ref>PMID:1459726</ref>  Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:[https://omim.org/entry/163200 163200]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.<ref>PMID:22683711</ref>  
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref> <ref>PMID:9020151</ref> <ref>PMID:12740440</ref>
[https://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref> <ref>PMID:9020151</ref> <ref>PMID:12740440</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gnp ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gnp ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The X-ray structures of the 1:1 complexes formed between p21H-ras (residues 1 to 166) and the nucleotides P3-1-(2-nitrophenyl)ethyl guanosine triphosphate ("caged GTP"; pure R- and S-diastereomers) and 3'-O-(N-methylanthraniloyl)-2'-deoxyguanosine 5'-(beta, gamma-imido)-triphosphate ("mant dG-ppNHp"), have been refined to an R-factor of 21.4% (R-caged GTP, 1.85 A resolution), 18.9% (S-caged GTP, 2.5 A resolution) and 17.6% (mant dGppNHp, 2.7 A resolution), respectively. Details of the structure determination, refinement and the structures themselves are presented. The overall structures of the complexes are identical in terms of the general organization of their secondary structure elements and are also identical to that reported for the analogous complex of p21H-ras with GppNHp. The binding of the GTP part is not significantly affected by the additional aromatic group (cage and mant, respectively) in contrast to the original observation on p21:caged GTP using the racemic mixture of R- and S-caged GTP. The main differences in the structures are observed in the region of loop L2 (residues Glu31 to Thr35) where the additional aromatic group attached to the nucleotide comes very close to the side-chain of Tyr32, including backbone displacements of 2.6 A, 2.2 A and 0.3 A for the residues from Glu31 to Thr35 for R-caged, S-caged GTP and mant dGppNHp, respectively. The refined structures provide additional data for the design of new nucleotide analogs and the importance of their stereochemistry as well as for the design of new mutant forms of p21H-ras for further biochemical investigations. The binding mode of mant dGppNHp reveals significant features for the understanding of the fluorescence signals observed in solution.
X-ray crystal structure analysis of the catalytic domain of the oncogene product p21H-ras complexed with caged GTP and mant dGppNHp.,Scheidig AJ, Franken SM, Corrie JE, Reid GP, Wittinghofer A, Pai EF, Goody RS J Mol Biol. 1995 Oct 13;253(1):132-50. PMID:7473708<ref>PMID:7473708</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1gnp" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 37: Line 29:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Corrie, J E.T]]
[[Category: Corrie JET]]
[[Category: Franken, S M]]
[[Category: Franken SM]]
[[Category: Goody, R S]]
[[Category: Goody RS]]
[[Category: Pai, E F]]
[[Category: Pai EF]]
[[Category: Reid, G P]]
[[Category: Reid GP]]
[[Category: Scheidig, A]]
[[Category: Scheidig A]]
[[Category: Wittinghofer, A]]
[[Category: Wittinghofer A]]
[[Category: Gtp binding protein]]

Latest revision as of 10:25, 7 February 2024

X-RAY CRYSTAL STRUCTURE ANALYSIS OF THE CATALYTIC DOMAIN OF THE ONCOGENE PRODUCT P21H-RAS COMPLEXED WITH CAGED GTP AND MANT DGPPNHPX-RAY CRYSTAL STRUCTURE ANALYSIS OF THE CATALYTIC DOMAIN OF THE ONCOGENE PRODUCT P21H-RAS COMPLEXED WITH CAGED GTP AND MANT DGPPNHP

Structural highlights

1gnp is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

RASH_HUMAN Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:218040. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.[1] [2] [3] [4] [5] [6] [7] Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:218040. CMEMS is a variant of Costello syndrome.[8] Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:607464. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms. Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors. Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:109800. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).[9] Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:163200. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.[10]

Function

RASH_HUMAN Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.[11] [12] [13]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, Filocamo M, Kato K, Suzuki Y, Kure S, Matsubara Y. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet. 2005 Oct;37(10):1038-40. Epub 2005 Sep 18. PMID:16170316 doi:ng1641
  2. Gripp KW, Lin AE, Stabley DL, Nicholson L, Scott CI Jr, Doyle D, Aoki Y, Matsubara Y, Zackai EH, Lapunzina P, Gonzalez-Meneses A, Holbrook J, Agresta CA, Gonzalez IL, Sol-Church K. HRAS mutation analysis in Costello syndrome: genotype and phenotype correlation. Am J Med Genet A. 2006 Jan 1;140(1):1-7. PMID:16329078 doi:10.1002/ajmg.a.31047
  3. Kerr B, Delrue MA, Sigaudy S, Perveen R, Marche M, Burgelin I, Stef M, Tang B, Eden OB, O'Sullivan J, De Sandre-Giovannoli A, Reardon W, Brewer C, Bennett C, Quarell O, M'Cann E, Donnai D, Stewart F, Hennekam R, Cave H, Verloes A, Philip N, Lacombe D, Levy N, Arveiler B, Black G. Genotype-phenotype correlation in Costello syndrome: HRAS mutation analysis in 43 cases. J Med Genet. 2006 May;43(5):401-5. Epub 2006 Jan 27. PMID:16443854 doi:jmg.2005.040352
  4. Zampino G, Pantaleoni F, Carta C, Cobellis G, Vasta I, Neri C, Pogna EA, De Feo E, Delogu A, Sarkozy A, Atzeri F, Selicorni A, Rauen KA, Cytrynbaum CS, Weksberg R, Dallapiccola B, Ballabio A, Gelb BD, Neri G, Tartaglia M. Diversity, parental germline origin, and phenotypic spectrum of de novo HRAS missense changes in Costello syndrome. Hum Mutat. 2007 Mar;28(3):265-72. PMID:17054105 doi:10.1002/humu.20431
  5. Gripp KW, Innes AM, Axelrad ME, Gillan TL, Parboosingh JS, Davies C, Leonard NJ, Lapointe M, Doyle D, Catalano S, Nicholson L, Stabley DL, Sol-Church K. Costello syndrome associated with novel germline HRAS mutations: an attenuated phenotype? Am J Med Genet A. 2008 Mar 15;146A(6):683-90. PMID:18247425 doi:10.1002/ajmg.a.32227
  6. Lo IF, Brewer C, Shannon N, Shorto J, Tang B, Black G, Soo MT, Ng DK, Lam ST, Kerr B. Severe neonatal manifestations of Costello syndrome. J Med Genet. 2008 Mar;45(3):167-71. Epub 2007 Nov 26. PMID:18039947 doi:10.1136/jmg.2007.054411
  7. Gremer L, De Luca A, Merbitz-Zahradnik T, Dallapiccola B, Morlot S, Tartaglia M, Kutsche K, Ahmadian MR, Rosenberger G. Duplication of Glu37 in the switch I region of HRAS impairs effector/GAP binding and underlies Costello syndrome by promoting enhanced growth factor-dependent MAPK and AKT activation. Hum Mol Genet. 2010 Mar 1;19(5):790-802. doi: 10.1093/hmg/ddp548. Epub 2009 Dec, 8. PMID:19995790 doi:10.1093/hmg/ddp548
  8. van der Burgt I, Kupsky W, Stassou S, Nadroo A, Barroso C, Diem A, Kratz CP, Dvorsky R, Ahmadian MR, Zenker M. Myopathy caused by HRAS germline mutations: implications for disturbed myogenic differentiation in the presence of constitutive HRas activation. J Med Genet. 2007 Jul;44(7):459-62. Epub 2007 Apr 5. PMID:17412879 doi:jmg.2007.049270
  9. Sakai E, Rikimaru K, Ueda M, Matsumoto Y, Ishii N, Enomoto S, Yamamoto H, Tsuchida N. The p53 tumor-suppressor gene and ras oncogene mutations in oral squamous-cell carcinoma. Int J Cancer. 1992 Dec 2;52(6):867-72. PMID:1459726
  10. Groesser L, Herschberger E, Ruetten A, Ruivenkamp C, Lopriore E, Zutt M, Langmann T, Singer S, Klingseisen L, Schneider-Brachert W, Toll A, Real FX, Landthaler M, Hafner C. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome. Nat Genet. 2012 Jun 10;44(7):783-7. doi: 10.1038/ng.2316. PMID:22683711 doi:10.1038/ng.2316
  11. Guil S, de La Iglesia N, Fernandez-Larrea J, Cifuentes D, Ferrer JC, Guinovart JJ, Bach-Elias M. Alternative splicing of the human proto-oncogene c-H-ras renders a new Ras family protein that trafficks to cytoplasm and nucleus. Cancer Res. 2003 Sep 1;63(17):5178-87. PMID:14500341
  12. Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem. 1997 Feb 14;272(7):4323-6. PMID:9020151
  13. Williams JG, Pappu K, Campbell SL. Structural and biochemical studies of p21Ras S-nitrosylation and nitric oxide-mediated guanine nucleotide exchange. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6376-81. Epub 2003 May 9. PMID:12740440 doi:10.1073/pnas.1037299100

1gnp, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA