5lt3: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='5lt3' size='340' side='right'caption='[[5lt3]], [[Resolution|resolution]] 2.59Å' scene=''> | <StructureSection load='5lt3' size='340' side='right'caption='[[5lt3]], [[Resolution|resolution]] 2.59Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5lt3]] is a 6 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5LT3 OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[5lt3]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5LT3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5LT3 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.59Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5lt3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5lt3 OCA], [https://pdbe.org/5lt3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5lt3 RCSB], [https://www.ebi.ac.uk/pdbsum/5lt3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5lt3 ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/KINH_HUMAN KINH_HUMAN] Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes (By similarity). | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 25: | Line 26: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Cao | [[Category: Cao L]] | ||
[[Category: Gigant | [[Category: Gigant B]] | ||
Latest revision as of 21:47, 18 October 2023
nucleotide-free kinesin-1 motor domain T87A mutant, P1 crystal formnucleotide-free kinesin-1 motor domain T87A mutant, P1 crystal form
Structural highlights
FunctionKINH_HUMAN Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes (By similarity). Publication Abstract from PubMedKinesin-1 is an ATP-dependent motor protein that moves towards microtubules (+)-ends. Whereas structures of isolated ADP-kinesin and of complexes with tubulin of apo-kinesin and of ATP-like-kinesin are available, structural data on apo-kinesin-1 in the absence of tubulin are still missing, leaving the role of nucleotide release in the structural cycle unsettled. Here, we identified mutations in the kinesin nucleotide-binding P-loop motif that interfere with ADP binding. These mutations destabilize the P-loop (T87A mutant) or magnesium binding (T92V), highlighting a dual mechanism for nucleotide release. The structures of these mutants in their apo form are either isomorphous to ADP-kinesin-1 or to tubulin-bound apo-kinesin-1. Remarkably, both structures are also obtained from the nucleotide-depleted wild-type protein. Our results lead to a model in which, when detached from microtubules, apo-kinesin possibly occupies the two conformations we characterized, whereas, upon microtubule binding, ADP-kinesin converts to the tubulin-bound apo-kinesin conformation and releases ADP. This conformation is primed to bind ATP and, therefore, to run through the natural nucleotide cycle of kinesin-1. The structural switch of nucleotide-free kinesin.,Cao L, Cantos-Fernandes S, Gigant B Sci Rep. 2017 Feb 14;7:42558. doi: 10.1038/srep42558. PMID:28195215[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|