6dnk: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6dnk' size='340' side='right'caption='[[6dnk]], [[Resolution|resolution]] 1.95Å' scene=''> | <StructureSection load='6dnk' size='340' side='right'caption='[[6dnk]], [[Resolution|resolution]] 1.95Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6dnk]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[6dnk]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DNK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6DNK FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.95Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1SY:CGAMP'>1SY</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6dnk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dnk OCA], [https://pdbe.org/6dnk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6dnk RCSB], [https://www.ebi.ac.uk/pdbsum/6dnk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6dnk ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/STING_HUMAN STING_HUMAN] Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes the production of type I interferon (IFN-alpha and IFN-beta). Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm. Acts by recognizing and binding cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced in response to DNA virus in the cytosol: upon binding of c-di-GMP or cGAMP, autoinhibition is alleviated and TMEM173/STING is able to activate both NF-kappa-B and IRF3 transcription pathways to induce expression of type I interferon and exert a potent anti-viral state. May be involved in translocon function, the translocon possibly being able to influence the induction of type I interferons. May be involved in transduction of apoptotic signals via its association with the major histocompatibility complex class II (MHC-II). Mediates death signaling via activation of the extracellular signal-regulated kinase (ERK) pathway.<ref>PMID:18818105</ref> <ref>PMID:18724357</ref> <ref>PMID:19776740</ref> <ref>PMID:19433799</ref> <ref>PMID:21074459</ref> <ref>PMID:21947006</ref> <ref>PMID:23258412</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 19: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 6dnk" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 6dnk" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Stimulator of interferon genes protein|Stimulator of interferon genes protein]] | |||
*[[Stimulator of interferon genes protein 3D structures|Stimulator of interferon genes protein 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Ergun | [[Category: Ergun SL]] | ||
[[Category: Fernandez | [[Category: Fernandez D]] | ||
[[Category: Li | [[Category: Li L]] | ||
Latest revision as of 09:10, 11 October 2023
Human Stimulator of Interferon GenesHuman Stimulator of Interferon Genes
Structural highlights
FunctionSTING_HUMAN Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes the production of type I interferon (IFN-alpha and IFN-beta). Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm. Acts by recognizing and binding cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced in response to DNA virus in the cytosol: upon binding of c-di-GMP or cGAMP, autoinhibition is alleviated and TMEM173/STING is able to activate both NF-kappa-B and IRF3 transcription pathways to induce expression of type I interferon and exert a potent anti-viral state. May be involved in translocon function, the translocon possibly being able to influence the induction of type I interferons. May be involved in transduction of apoptotic signals via its association with the major histocompatibility complex class II (MHC-II). Mediates death signaling via activation of the extracellular signal-regulated kinase (ERK) pathway.[1] [2] [3] [4] [5] [6] [7] Publication Abstract from PubMedHow the central innate immune protein, STING, is activated by its ligands remains unknown. Here, using structural biology and biochemistry, we report that the metazoan second messenger 2'3'-cGAMP induces closing of the human STING homodimer and release of the STING C-terminal tail, which exposes a polymerization interface on the STING dimer and leads to the formation of disulfide-linked polymers via cysteine residue 148. Disease-causing hyperactive STING mutations either flank C148 and depend on disulfide formation or reside in the C-terminal tail binding site and cause constitutive C-terminal tail release and polymerization. Finally, bacterial cyclic-di-GMP induces an alternative active STING conformation, activates STING in a cooperative manner, and acts as a partial antagonist of 2'3'-cGAMP signaling. Our insights explain the tight control of STING signaling given varying background activation signals and provide a therapeutic hypothesis for autoimmune syndrome treatment. STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition.,Ergun SL, Fernandez D, Weiss TM, Li L Cell. 2019 Jun 12. pii: S0092-8674(19)30564-1. doi: 10.1016/j.cell.2019.05.036. PMID:31230712[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|