5fr1: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='5fr1' size='340' side='right'caption='[[5fr1]], [[Resolution|resolution]] 2.75&Aring;' scene=''>
<StructureSection load='5fr1' size='340' side='right'caption='[[5fr1]], [[Resolution|resolution]] 2.75&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5fr1]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bovin Bovin] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5FR1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5FR1 FirstGlance]. <br>
<table><tr><td colspan='2'>[[5fr1]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5FR1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5FR1 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.75&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5fr2|5fr2]]</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5fr1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5fr1 OCA], [https://pdbe.org/5fr1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5fr1 RCSB], [https://www.ebi.ac.uk/pdbsum/5fr1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5fr1 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5fr1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5fr1 OCA], [http://pdbe.org/5fr1 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5fr1 RCSB], [http://www.ebi.ac.uk/pdbsum/5fr1 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5fr1 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/RHOA_HUMAN RHOA_HUMAN]] Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers. Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis. Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion. Serves as a target for the yopT cysteine peptidase from Yersinia pestis, vector of the plague, and Yersinia pseudotuberculosis, which causes gastrointestinal disorders. Stimulates PKN2 kinase activity. May be an activator of PLCE1. Activated by ARHGEF2, which promotes the exchange of GDP for GTP. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization.<ref>PMID:8910519</ref> <ref>PMID:9121475</ref> <ref>PMID:12900402</ref> <ref>PMID:16103226</ref> <ref>PMID:16236794</ref> <ref>PMID:19934221</ref> <ref>PMID:20937854</ref> <ref>PMID:20974804</ref>  [[http://www.uniprot.org/uniprot/GDIR1_BOVIN GDIR1_BOVIN]] In glioma cells, inhibits cell migration and invasion by mediating the signals of SEMA5A and PLXNB3 that lead to inactivation of RAC1 (By similarity). Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them.<ref>PMID:2120668</ref> <ref>PMID:9194563</ref>
[https://www.uniprot.org/uniprot/GDIR1_BOVIN GDIR1_BOVIN] In glioma cells, inhibits cell migration and invasion by mediating the signals of SEMA5A and PLXNB3 that lead to inactivation of RAC1 (By similarity). Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them.<ref>PMID:2120668</ref> <ref>PMID:9194563</ref>  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 22: Line 21:


==See Also==
==See Also==
*[[Rho GTPase|Rho GTPase]]
*[[Guanine nucleotide dissociation inhibitor|Guanine nucleotide dissociation inhibitor]]
*[[Rho GTPase 3D structures|Rho GTPase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bovin]]
[[Category: Bos taurus]]
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Kuhlmann, N]]
[[Category: Kuhlmann N]]
[[Category: Lammers, M]]
[[Category: Lammers M]]
[[Category: Wroblowski, S]]
[[Category: Wroblowski S]]
[[Category: Actin-cytoskeleton rhogdi-alpha]]
[[Category: Guanine-nucleotide-binding protein]]
[[Category: Lysine-acetylation]]
[[Category: Molecular switch]]
[[Category: Nucleotide dissociation]]
[[Category: Prenylation]]
[[Category: Ras-superfamily]]
[[Category: Signaling protein]]

Revision as of 16:19, 26 July 2023

Double acetylated RhoGDI-alpha in complex with RhoA-GDPDouble acetylated RhoGDI-alpha in complex with RhoA-GDP

Structural highlights

5fr1 is a 2 chain structure with sequence from Bos taurus and Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.75Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GDIR1_BOVIN In glioma cells, inhibits cell migration and invasion by mediating the signals of SEMA5A and PLXNB3 that lead to inactivation of RAC1 (By similarity). Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them.[1] [2]

Publication Abstract from PubMed

Rho proteins are major regulators of the cytoskeleton. As most Ras-related proteins, they switch between an active, GTP-bound and an inactive, GDP-bound conformation. Rho proteins are targeted to the plasma membrane via a polybasic region and a prenyl group attached to a C-terminal cysteine residue. To distribute Rho proteins in the cell, the molecular chaperone RhoGDIalpha binds to the prenylated Rho proteins forming a cytosolic pool of mainly GDP-loaded Rho. Most studies characterized the interaction of prenylated Rho proteins and RhoGDIalpha. However, RhoGDIalpha was also shown to bind to nonprenylated Rho proteins with physiologically relevant micomolar affinities. Recently, it was discovered that RhoGDIalpha is targeted by post-translational lysine acetylation. For one site, K141, it was hypothesized that acetylation might lead to increased levels of formation of filamentous actin and filopodia in mammalian cells. The functional consequences of lysine acetylation for the interplay with nonprenylated RhoA have not been investigated. Here, we report that lysine acetylation at lysines K127 and K141 in the RhoGDIalpha immunoglobulin domain interferes with the interaction toward nonprenylated RhoA using a combined biochemical and biophysical approach. We determined the first crystal structure of a doubly acetylated protein, RhoGDIalpha, in complex with RhoA.GDP. We discover that the C-terminus of RhoA adopts a different conformation forming an intermolecular beta-sheet with the RhoGDIalpha immunoglobulin domain.

RhoGDIalpha Acetylation at K127 and K141 Affects Binding toward Nonprenylated RhoA.,Kuhlmann N, Wroblowski S, Scislowski L, Lammers M Biochemistry. 2016 Jan 4. PMID:26695096[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Fukumoto Y, Kaibuchi K, Hori Y, Fujioka H, Araki S, Ueda T, Kikuchi A, Takai Y. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene. 1990 Sep;5(9):1321-8. PMID:2120668
  2. Gosser YQ, Nomanbhoy TK, Aghazadeh B, Manor D, Combs C, Cerione RA, Rosen MK. C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases. Nature. 1997 Jun 19;387(6635):814-9. PMID:9194563 doi:10.1038/42961
  3. Kuhlmann N, Wroblowski S, Scislowski L, Lammers M. RhoGDIalpha Acetylation at K127 and K141 Affects Binding toward Nonprenylated RhoA. Biochemistry. 2016 Jan 4. PMID:26695096 doi:http://dx.doi.org/10.1021/acs.biochem.5b01242

5fr1, resolution 2.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA