3a3n: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of complex between SA-subtilisin and Tk-propeptide with deletion of the two C-terminal residues== | ==Crystal structure of complex between SA-subtilisin and Tk-propeptide with deletion of the two C-terminal residues== | ||
<StructureSection load='3a3n' size='340' side='right' caption='[[3a3n]], [[Resolution|resolution]] 2.20Å' scene=''> | <StructureSection load='3a3n' size='340' side='right'caption='[[3a3n]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3a3n]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"thermococcus_kodakaraensis"_atomi_et_al._2004 "thermococcus kodakaraensis" atomi et al. 2004]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A3N OCA]. For a <b>guided tour on the structure components</b> use [http:// | <table><tr><td colspan='2'>[[3a3n]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"thermococcus_kodakaraensis"_atomi_et_al._2004 "thermococcus kodakaraensis" atomi et al. 2004]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A3N OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=3A3N FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2z30|2z30]], [[3a3o|3a3o]], [[3a3p|3a3p]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2z30|2z30]], [[3a3o|3a3o]], [[3a3p|3a3p]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http:// | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=3a3n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a3n OCA], [http://pdbe.org/3a3n PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3a3n RCSB], [http://www.ebi.ac.uk/pdbsum/3a3n PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3a3n ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 31: | Line 31: | ||
==See Also== | ==See Also== | ||
*[[Subtilisin|Subtilisin]] | *[[Subtilisin 3D structures|Subtilisin 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 37: | Line 37: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Thermococcus kodakaraensis atomi et al. 2004]] | [[Category: Thermococcus kodakaraensis atomi et al. 2004]] | ||
[[Category: Large Structures]] | |||
[[Category: Kanaya, S]] | [[Category: Kanaya, S]] | ||
[[Category: Koga, Y]] | [[Category: Koga, Y]] |
Revision as of 15:16, 29 July 2020
Crystal structure of complex between SA-subtilisin and Tk-propeptide with deletion of the two C-terminal residuesCrystal structure of complex between SA-subtilisin and Tk-propeptide with deletion of the two C-terminal residues
Structural highlights
Function[TKSU_THEKO] Has a broad substrate specificity with a slight preference to large hydrophobic amino acid residues at the P1 position. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTk-subtilisin requires Ca(2+) for folding. This folding is accelerated by the chaperone function of its propeptide (Tkpro). Several Tkpro and Tk-subtilisin derivatives were constructed to examine whether the interactions between the C-terminal extended region of Tkpro and Tk-subtilisin and Glu61/Asp63- and Glu201-mediated hydrogen bonds at the domain interface are important for the chaperone function of Tkpro. The Tkpro derivatives with a series of C-terminal truncations and double mutations at Glu61 and Asp63 exhibited weaker chaperone functions than Tkpro for SA-subtilisin (active-site mutant of Tk-subtilisin). Good correlation was observed between their chaperone functions and binding abilities to the folded SA-subtilisin protein. These results suggest that the C-terminal extended region, Glu61, and Asp63 of Tkpro are not critical for folding of Tk-subtilisin but accelerate it by binding to a folding intermediate of Tk-subtilisin with a native-like structure at their binding sites. In contrast, Tkpro exhibited little chaperone function for E201A/SA-subtilisin. It could bind to the folded E201A/SA-subtilisin protein with a lower association constant than that for SA-subtilisin. These results suggest a loop of Tkpro, which interacts with Glu201 of Tk-subtilisin through hydrogen bonds and is required for folding of Tk-subtilisin by binding to a folding intermediate of Tk-subtilisin with a nonnative structure. Because this loop is fairly hydrophobic and tightly packs to the surface parallel helices of the central alphabetaalpha substructure of Tk-subtilisin, binding of this loop to Glu201 may induce association of these two helices and thereby formation of the alphabetaalpha substructure. We propose that Glu201-mediated interactions are critical for initiation of Tkpro-catalyzed folding of Tk-subtilisin. Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin.,Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S J Mol Biol. 2009 Nov 27;394(2):306-19. doi: 10.1016/j.jmb.2009.09.028. Epub 2009 , Sep 18. PMID:19766655[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|