3a3p

From Proteopedia
Jump to navigation Jump to search

Crystal structure of complex between E201A/SA-subtilisin and Tk-propeptideCrystal structure of complex between E201A/SA-subtilisin and Tk-propeptide

Structural highlights

3a3p is a 2 chain structure with sequence from Thermococcus kodakarensis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TKSU_THEKO Has a broad substrate specificity with a slight preference to large hydrophobic amino acid residues at the P1 position.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Tk-subtilisin requires Ca(2+) for folding. This folding is accelerated by the chaperone function of its propeptide (Tkpro). Several Tkpro and Tk-subtilisin derivatives were constructed to examine whether the interactions between the C-terminal extended region of Tkpro and Tk-subtilisin and Glu61/Asp63- and Glu201-mediated hydrogen bonds at the domain interface are important for the chaperone function of Tkpro. The Tkpro derivatives with a series of C-terminal truncations and double mutations at Glu61 and Asp63 exhibited weaker chaperone functions than Tkpro for SA-subtilisin (active-site mutant of Tk-subtilisin). Good correlation was observed between their chaperone functions and binding abilities to the folded SA-subtilisin protein. These results suggest that the C-terminal extended region, Glu61, and Asp63 of Tkpro are not critical for folding of Tk-subtilisin but accelerate it by binding to a folding intermediate of Tk-subtilisin with a native-like structure at their binding sites. In contrast, Tkpro exhibited little chaperone function for E201A/SA-subtilisin. It could bind to the folded E201A/SA-subtilisin protein with a lower association constant than that for SA-subtilisin. These results suggest a loop of Tkpro, which interacts with Glu201 of Tk-subtilisin through hydrogen bonds and is required for folding of Tk-subtilisin by binding to a folding intermediate of Tk-subtilisin with a nonnative structure. Because this loop is fairly hydrophobic and tightly packs to the surface parallel helices of the central alphabetaalpha substructure of Tk-subtilisin, binding of this loop to Glu201 may induce association of these two helices and thereby formation of the alphabetaalpha substructure. We propose that Glu201-mediated interactions are critical for initiation of Tkpro-catalyzed folding of Tk-subtilisin.

Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin.,Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S J Mol Biol. 2009 Nov 27;394(2):306-19. doi: 10.1016/j.jmb.2009.09.028. Epub 2009 , Sep 18. PMID:19766655[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S. Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin. J Mol Biol. 2009 Nov 27;394(2):306-19. doi: 10.1016/j.jmb.2009.09.028. Epub 2009 , Sep 18. PMID:19766655 doi:http://dx.doi.org/10.1016/j.jmb.2009.09.028

3a3p, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA