6ai2: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='6ai2' size='340' side='right'caption='[[6ai2]], [[Resolution|resolution]] 3.30&Aring;' scene=''>
<StructureSection load='6ai2' size='340' side='right'caption='[[6ai2]], [[Resolution|resolution]] 3.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6ai2]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6AI2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6AI2 FirstGlance]. <br>
<table><tr><td colspan='2'>[[6ai2]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Salty Salty]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6AI2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6AI2 FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3a5i|3a5i]]</td></tr>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3a5i|3a5i]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">flhA, STM1913 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=99287 SALTY])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ai2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ai2 OCA], [http://pdbe.org/6ai2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ai2 RCSB], [http://www.ebi.ac.uk/pdbsum/6ai2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ai2 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ai2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ai2 OCA], [http://pdbe.org/6ai2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ai2 RCSB], [http://www.ebi.ac.uk/pdbsum/6ai2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ai2 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/FLHA_SALTY FLHA_SALTY]] Required for formation of the rod structure of the flagellar apparatus. Together with FliI and FliH, may constitute the export apparatus of flagellin.  
[[http://www.uniprot.org/uniprot/FLHA_SALTY FLHA_SALTY]] Required for formation of the rod structure of the flagellar apparatus. Together with FliI and FliH, may constitute the export apparatus of flagellin.  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Bacteria use a type III protein export apparatus for construction of the flagellum, which consists of the basal body, the hook, and the filament. FlhA forms a homo-nonamer through its C-terminal cytoplasmic domains (FlhAC) and ensures the strict order of flagellar assembly. FlhAC goes through dynamic domain motions during protein export, but it remains unknown how it occurs. Here, we report that the FlhA(G368C) mutation biases FlhAC toward a closed form, thereby reducing the binding affinity of FlhAC for flagellar export chaperones in complex with their cognate filament-type substrates. The G368C mutations also restrict the conformational flexibility of a linker region of FlhA (FlhAL), suppressing FlhAC ring formation. We propose that interactions of FlhAL with its neighboring subunit converts FlhAC in the ring from a closed conformation to an open one, allowing the chaperon/substrate complexes to bind to the FlhAC ring to form the filament at the hook tip.
Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus.,Inoue Y, Ogawa Y, Kinoshita M, Terahara N, Shimada M, Kodera N, Ando T, Namba K, Kitao A, Imada K, Minamino T Structure. 2019 Apr 16. pii: S0969-2126(19)30095-4. doi:, 10.1016/j.str.2019.03.017. PMID:31031200<ref>PMID:31031200</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6ai2" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Salty]]
[[Category: Imada, K]]
[[Category: Imada, K]]
[[Category: Kinoshita, M]]
[[Category: Kinoshita, M]]

Revision as of 11:08, 21 May 2019

Structure of the 328-692 fragment of FlhA (F459A)Structure of the 328-692 fragment of FlhA (F459A)

Structural highlights

6ai2 is a 2 chain structure with sequence from Salty. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:flhA, STM1913 (SALTY)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[FLHA_SALTY] Required for formation of the rod structure of the flagellar apparatus. Together with FliI and FliH, may constitute the export apparatus of flagellin.

Publication Abstract from PubMed

Bacteria use a type III protein export apparatus for construction of the flagellum, which consists of the basal body, the hook, and the filament. FlhA forms a homo-nonamer through its C-terminal cytoplasmic domains (FlhAC) and ensures the strict order of flagellar assembly. FlhAC goes through dynamic domain motions during protein export, but it remains unknown how it occurs. Here, we report that the FlhA(G368C) mutation biases FlhAC toward a closed form, thereby reducing the binding affinity of FlhAC for flagellar export chaperones in complex with their cognate filament-type substrates. The G368C mutations also restrict the conformational flexibility of a linker region of FlhA (FlhAL), suppressing FlhAC ring formation. We propose that interactions of FlhAL with its neighboring subunit converts FlhAC in the ring from a closed conformation to an open one, allowing the chaperon/substrate complexes to bind to the FlhAC ring to form the filament at the hook tip.

Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus.,Inoue Y, Ogawa Y, Kinoshita M, Terahara N, Shimada M, Kodera N, Ando T, Namba K, Kitao A, Imada K, Minamino T Structure. 2019 Apr 16. pii: S0969-2126(19)30095-4. doi:, 10.1016/j.str.2019.03.017. PMID:31031200[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Inoue Y, Ogawa Y, Kinoshita M, Terahara N, Shimada M, Kodera N, Ando T, Namba K, Kitao A, Imada K, Minamino T. Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus. Structure. 2019 Apr 16. pii: S0969-2126(19)30095-4. doi:, 10.1016/j.str.2019.03.017. PMID:31031200 doi:http://dx.doi.org/10.1016/j.str.2019.03.017

6ai2, resolution 3.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA