6ai2

From Proteopedia
Jump to navigation Jump to search

Structure of the 328-692 fragment of FlhA (F459A)Structure of the 328-692 fragment of FlhA (F459A)

Structural highlights

6ai2 is a 2 chain structure with sequence from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FLHA_SALTY Required for formation of the rod structure of the flagellar apparatus. Together with FliI and FliH, may constitute the export apparatus of flagellin.

Publication Abstract from PubMed

Bacteria use a type III protein export apparatus for construction of the flagellum, which consists of the basal body, the hook, and the filament. FlhA forms a homo-nonamer through its C-terminal cytoplasmic domains (FlhAC) and ensures the strict order of flagellar assembly. FlhAC goes through dynamic domain motions during protein export, but it remains unknown how it occurs. Here, we report that the FlhA(G368C) mutation biases FlhAC toward a closed form, thereby reducing the binding affinity of FlhAC for flagellar export chaperones in complex with their cognate filament-type substrates. The G368C mutations also restrict the conformational flexibility of a linker region of FlhA (FlhAL), suppressing FlhAC ring formation. We propose that interactions of FlhAL with its neighboring subunit converts FlhAC in the ring from a closed conformation to an open one, allowing the chaperon/substrate complexes to bind to the FlhAC ring to form the filament at the hook tip.

Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus.,Inoue Y, Ogawa Y, Kinoshita M, Terahara N, Shimada M, Kodera N, Ando T, Namba K, Kitao A, Imada K, Minamino T Structure. 2019 Apr 16. pii: S0969-2126(19)30095-4. doi:, 10.1016/j.str.2019.03.017. PMID:31031200[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Inoue Y, Ogawa Y, Kinoshita M, Terahara N, Shimada M, Kodera N, Ando T, Namba K, Kitao A, Imada K, Minamino T. Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus. Structure. 2019 Apr 16. pii: S0969-2126(19)30095-4. doi:, 10.1016/j.str.2019.03.017. PMID:31031200 doi:http://dx.doi.org/10.1016/j.str.2019.03.017

6ai2, resolution 3.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA