5svc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='5svc' size='340' side='right' caption='[[5svc]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
<StructureSection load='5svc' size='340' side='right' caption='[[5svc]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5svc]] is a 6 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5SVC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5SVC FirstGlance]. <br>
<table><tr><td colspan='2'>[[5svc]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Xanp2 Xanp2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5SVC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5SVC FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5svb|5svb]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5svb|5svb]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">acxB, Xaut_3510 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=78245 XANP2]), acxA, Xaut_3509 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=78245 XANP2]), acxC, Xaut_3511 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=78245 XANP2])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Acetone_carboxylase Acetone carboxylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.4.1.6 6.4.1.6] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Acetone_carboxylase Acetone carboxylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.4.1.6 6.4.1.6] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5svc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5svc OCA], [http://pdbe.org/5svc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5svc RCSB], [http://www.ebi.ac.uk/pdbsum/5svc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5svc ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5svc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5svc OCA], [http://pdbe.org/5svc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5svc RCSB], [http://www.ebi.ac.uk/pdbsum/5svc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5svc ProSAT]</span></td></tr>
Line 11: Line 12:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/ACXB_XANP2 ACXB_XANP2]] Catalyzes the carboxylation of acetone to form acetoacetate. Has a reduced activity on butanone, and no activity on 2-pentatone, 3-pentatone, 2-hexanone, chloroacetone, pyruvate, phosphoenolpyruvate, acetaldehyde, propionaldehyde and propylene oxide.<ref>PMID:9237998</ref>  [[http://www.uniprot.org/uniprot/ACXC_XANP2 ACXC_XANP2]] Catalyzes the carboxylation of acetone to form acetoacetate. Has a reduced activity on butanone, and no activity on 2-pentatone, 3-pentatone, 2-hexanone, chloroacetone, pyruvate, phosphoenolpyruvate, acetaldehyde, propionaldehyde and propylene oxide.<ref>PMID:9237998</ref>  [[http://www.uniprot.org/uniprot/ACXA_XANP2 ACXA_XANP2]] Catalyzes the carboxylation of acetone to form acetoacetate. Has a reduced activity on butanone, and no activity on 2-pentatone, 3-pentatone, 2-hexanone, chloroacetone, pyruvate, phosphoenolpyruvate, acetaldehyde, propionaldehyde and propylene oxide.<ref>PMID:9237998</ref>   
[[http://www.uniprot.org/uniprot/ACXB_XANP2 ACXB_XANP2]] Catalyzes the carboxylation of acetone to form acetoacetate. Has a reduced activity on butanone, and no activity on 2-pentatone, 3-pentatone, 2-hexanone, chloroacetone, pyruvate, phosphoenolpyruvate, acetaldehyde, propionaldehyde and propylene oxide.<ref>PMID:9237998</ref>  [[http://www.uniprot.org/uniprot/ACXC_XANP2 ACXC_XANP2]] Catalyzes the carboxylation of acetone to form acetoacetate. Has a reduced activity on butanone, and no activity on 2-pentatone, 3-pentatone, 2-hexanone, chloroacetone, pyruvate, phosphoenolpyruvate, acetaldehyde, propionaldehyde and propylene oxide.<ref>PMID:9237998</ref>  [[http://www.uniprot.org/uniprot/ACXA_XANP2 ACXA_XANP2]] Catalyzes the carboxylation of acetone to form acetoacetate. Has a reduced activity on butanone, and no activity on 2-pentatone, 3-pentatone, 2-hexanone, chloroacetone, pyruvate, phosphoenolpyruvate, acetaldehyde, propionaldehyde and propylene oxide.<ref>PMID:9237998</ref>   
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Microorganisms use carboxylase enzymes to form new carbon-carbon bonds by introducing carbon dioxide gas (CO2) or its hydrated form, bicarbonate (HCO3-), into target molecules. Acetone carboxylases (ACs) catalyze the conversion of substrates acetone and HCO3- to form the product acetoacetate. Many bicarbonate-incorporating carboxylases rely on the organic cofactor biotin for the activation of bicarbonate. ACs contain metal ions but not organic cofactors, and use ATP to activate substrates through phosphorylation. How the enzyme coordinates these phosphorylation events and new C-C bond formation in the absence of biotin has remained a mystery since these enzymes were discovered. The first structural rationale for acetone carboxylation is presented here, focusing on the 360 kDa (alphabetagamma)2 heterohexameric AC from Xanthobacter autotrophicus in the ligand-free, AMP-bound, and acetate coordinated states. These structures suggest successive steps in a catalytic cycle revealing that AC undergoes large conformational changes coupled to substrate activation by ATP to perform C-C bond ligation at a distant Mn center. These results illustrate a new chemical strategy for the conversion of CO2 into biomass, a process of great significance to the global carbon cycle.
Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation.,Mus F, Eilers BJ, Alleman AB, Kabasakal BV, Wells JN, Murray JW, Nocek BP, DuBois JL, Peters JW Sci Rep. 2017 Aug 3;7(1):7234. doi: 10.1038/s41598-017-06973-8. PMID:28775283<ref>PMID:28775283</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 5svc" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
Line 16: Line 26:
</StructureSection>
</StructureSection>
[[Category: Acetone carboxylase]]
[[Category: Acetone carboxylase]]
[[Category: Xanp2]]
[[Category: Alleman, A B]]
[[Category: Alleman, A B]]
[[Category: Dubois, J L]]
[[Category: Dubois, J L]]

Revision as of 10:34, 21 February 2019

Mechanism of ATP-Dependent Acetone Carboxylation, Acetone Carboxylase nucleotide-free structureMechanism of ATP-Dependent Acetone Carboxylation, Acetone Carboxylase nucleotide-free structure

Structural highlights

5svc is a 6 chain structure with sequence from Xanp2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Gene:acxB, Xaut_3510 (XANP2), acxA, Xaut_3509 (XANP2), acxC, Xaut_3511 (XANP2)
Activity:Acetone carboxylase, with EC number 6.4.1.6
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[ACXB_XANP2] Catalyzes the carboxylation of acetone to form acetoacetate. Has a reduced activity on butanone, and no activity on 2-pentatone, 3-pentatone, 2-hexanone, chloroacetone, pyruvate, phosphoenolpyruvate, acetaldehyde, propionaldehyde and propylene oxide.[1] [ACXC_XANP2] Catalyzes the carboxylation of acetone to form acetoacetate. Has a reduced activity on butanone, and no activity on 2-pentatone, 3-pentatone, 2-hexanone, chloroacetone, pyruvate, phosphoenolpyruvate, acetaldehyde, propionaldehyde and propylene oxide.[2] [ACXA_XANP2] Catalyzes the carboxylation of acetone to form acetoacetate. Has a reduced activity on butanone, and no activity on 2-pentatone, 3-pentatone, 2-hexanone, chloroacetone, pyruvate, phosphoenolpyruvate, acetaldehyde, propionaldehyde and propylene oxide.[3]

Publication Abstract from PubMed

Microorganisms use carboxylase enzymes to form new carbon-carbon bonds by introducing carbon dioxide gas (CO2) or its hydrated form, bicarbonate (HCO3-), into target molecules. Acetone carboxylases (ACs) catalyze the conversion of substrates acetone and HCO3- to form the product acetoacetate. Many bicarbonate-incorporating carboxylases rely on the organic cofactor biotin for the activation of bicarbonate. ACs contain metal ions but not organic cofactors, and use ATP to activate substrates through phosphorylation. How the enzyme coordinates these phosphorylation events and new C-C bond formation in the absence of biotin has remained a mystery since these enzymes were discovered. The first structural rationale for acetone carboxylation is presented here, focusing on the 360 kDa (alphabetagamma)2 heterohexameric AC from Xanthobacter autotrophicus in the ligand-free, AMP-bound, and acetate coordinated states. These structures suggest successive steps in a catalytic cycle revealing that AC undergoes large conformational changes coupled to substrate activation by ATP to perform C-C bond ligation at a distant Mn center. These results illustrate a new chemical strategy for the conversion of CO2 into biomass, a process of great significance to the global carbon cycle.

Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation.,Mus F, Eilers BJ, Alleman AB, Kabasakal BV, Wells JN, Murray JW, Nocek BP, DuBois JL, Peters JW Sci Rep. 2017 Aug 3;7(1):7234. doi: 10.1038/s41598-017-06973-8. PMID:28775283[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Sluis MK, Ensign SA. Purification and characterization of acetone carboxylase from Xanthobacter strain Py2. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8456-61. PMID:9237998
  2. Sluis MK, Ensign SA. Purification and characterization of acetone carboxylase from Xanthobacter strain Py2. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8456-61. PMID:9237998
  3. Sluis MK, Ensign SA. Purification and characterization of acetone carboxylase from Xanthobacter strain Py2. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8456-61. PMID:9237998
  4. Mus F, Eilers BJ, Alleman AB, Kabasakal BV, Wells JN, Murray JW, Nocek BP, DuBois JL, Peters JW. Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation. Sci Rep. 2017 Aug 3;7(1):7234. doi: 10.1038/s41598-017-06973-8. PMID:28775283 doi:http://dx.doi.org/10.1038/s41598-017-06973-8

5svc, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA