3fwc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==Sac3:Sus1:Cdc31 complex==
==Sac3:Sus1:Cdc31 complex==
<StructureSection load='3fwc' size='340' side='right' caption='[[3fwc]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
<StructureSection load='3fwc' size='340' side='right' caption='[[3fwc]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
Line 6: Line 7:
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3fwb|3fwb]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3fwb|3fwb]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDC31, DSK1, YOR257W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824]), LEP1, SAC3, YD8358.13, YDR159W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824]), SUS1, YBR111W-A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824])</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDC31, DSK1, YOR257W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824]), LEP1, SAC3, YD8358.13, YDR159W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824]), SUS1, YBR111W-A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3fwc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fwc OCA], [http://pdbe.org/3fwc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3fwc RCSB], [http://www.ebi.ac.uk/pdbsum/3fwc PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3fwc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fwc OCA], [http://pdbe.org/3fwc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3fwc RCSB], [http://www.ebi.ac.uk/pdbsum/3fwc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3fwc ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
Line 14: Line 15:
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fw/3fwc_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fw/3fwc_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
Line 39: Line 40:
[[Category: Jani, D]]
[[Category: Jani, D]]
[[Category: Stewart, M]]
[[Category: Stewart, M]]
[[Category: Acetylation]]
[[Category: Calcium]]
[[Category: Cell cycle]]
[[Category: Cell cycle]]
[[Category: Cell division]]
[[Category: Cell division]]

Revision as of 10:27, 5 December 2018

Sac3:Sus1:Cdc31 complexSac3:Sus1:Cdc31 complex

Structural highlights

3fwc is a 16 chain structure with sequence from Atcc 18824. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:CDC31, DSK1, YOR257W (ATCC 18824), LEP1, SAC3, YD8358.13, YDR159W (ATCC 18824), SUS1, YBR111W-A (ATCC 18824)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[CDC31_YEAST] Functions as a component of the nuclear pore complex (NPC) and the spindle pole body (SPB) half-bridge. At the SPB, it is recruited by KAR1 and MPS3 to the SPB half-bridge and involved in the initial steps of SPB duplication. It probably plays a similar role in de novo assembly of NPCs at the nuclear envelope. Also involved in connection with the protein kinase KIC1 in the maintenance of cell morphology and integrity.[1] [2] [3] [4] [5] [6] [SUS1_YEAST] Involved in mRNA export coupled transcription activation by association with both the TREX-2 and the SAGA complexes. The transcription regulatory histone acetylation (HAT) complex SAGA is involved in RNA polymerase II-dependent regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SUS1 forms a distinct functional SAGA module with UBP8, SGF11 and SGF73 required for deubiquitination of H2B and for the maintenance of steady-state H3 methylation levels. The TREX-2 complex functions in docking export-competent ribonucleoprotein particles (mRNPs) to the nuclear entrance of the nuclear pore complex (nuclear basket), by association with components of the nuclear mRNA export machinery (MEX67-MTR2 and SUB2) in the nucleoplasm and the nucleoporin NUP1 at the nuclear basket. TREX-2 participates in mRNA export and accurate chromatin positioning in the nucleus by tethering genes to the nuclear periphery. SUS1 has also a role in mRNP biogenesis and maintenance of genome integrity through preventing RNA-mediated genome instability. Finally SUS1 has a role in response to DNA damage induced by methyl methane sulfonate (MMS) and replication arrest induced by hydroxyurea.[7] [8] [9] [10] [11] [12] [13] [SAC3_YEAST] Component of the SAC3-THP1 complex, which functions in transcription-coupled mRNA export from the nucleus to the cytoplasm. SAC3-THP1 functions in docking export-competent ribonucleoprotein particles (mRNPs) to the nuclear entrance of the nuclear pore complex (nuclear basket), by association with components of the nuclear mRNA export machinery (MEX67-MTR2 and SUB2) in the nucleoplasm and the nucleoporin NUP1 at the nuclear basket.[14] [15]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The yeast Sac3:Cdc31:Sus1:Thp1 (TREX-2) complex facilitates the repositioning and association of actively transcribing genes with nuclear pores (NPCs)-"gene gating"-that is central to integrating transcription, processing, and mRNA nuclear export. We present here the crystal structure of Sus1 and Cdc31 bound to a central region of Sac3 (the CID domain) that is crucial for its function. Sac3(CID) forms a long, gently undulating alpha helix around which one Cdc31 and two Sus1 chains are wrapped. Sus1 has an articulated helical hairpin fold that facilitates its wrapping around Sac3. In vivo studies using engineered mutations that selectively disrupted binding of individual chains to Sac3 indicated that Sus1 and Cdc31 function synergistically to promote NPC association of TREX-2 and mRNA nuclear export. These data indicate Sac3(CID) provides a scaffold within TREX-2 to integrate interactions between protein complexes to facilitate the coupling of transcription and mRNA export during gene expression.

Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export.,Jani D, Lutz S, Marshall NJ, Fischer T, Kohler A, Ellisdon AM, Hurt E, Stewart M Mol Cell. 2009 Mar 27;33(6):727-37. PMID:19328066[16]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Biggins S, Rose MD. Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body. J Cell Biol. 1994 May;125(4):843-52. PMID:8188750
  2. Vallen EA, Ho W, Winey M, Rose MD. Genetic interactions between CDC31 and KAR1, two genes required for duplication of the microtubule organizing center in Saccharomyces cerevisiae. Genetics. 1994 Jun;137(2):407-22. PMID:8070654
  3. Sullivan DS, Biggins S, Rose MD. The yeast centrin, cdc31p, and the interacting protein kinase, Kic1p, are required for cell integrity. J Cell Biol. 1998 Nov 2;143(3):751-65. PMID:9813095
  4. Ivanovska I, Rose MD. Fine structure analysis of the yeast centrin, Cdc31p, identifies residues specific for cell morphology and spindle pole body duplication. Genetics. 2001 Feb;157(2):503-18. PMID:11156974
  5. Jaspersen SL, Giddings TH Jr, Winey M. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J Cell Biol. 2002 Dec 23;159(6):945-56. Epub 2002 Dec 16. PMID:12486115 doi:http://dx.doi.org/10.1083/jcb.200208169
  6. Kilmartin JV. Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J Cell Biol. 2003 Sep 29;162(7):1211-21. Epub 2003 Sep 22. PMID:14504268 doi:http://dx.doi.org/10.1083/jcb.200307064
  7. Fischer T, Rodriguez-Navarro S, Pereira G, Racz A, Schiebel E, Hurt E. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat Cell Biol. 2004 Sep;6(9):840-8. Epub 2004 Aug 15. PMID:15311284 doi:10.1038/ncb1163
  8. Kastenmayer JP, Ni L, Chu A, Kitchen LE, Au WC, Yang H, Carter CD, Wheeler D, Davis RW, Boeke JD, Snyder MA, Basrai MA. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res. 2006 Mar;16(3):365-73. PMID:16510898 doi:16/3/365
  9. Kohler A, Pascual-Garcia P, Llopis A, Zapater M, Posas F, Hurt E, Rodriguez-Navarro S. The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11. Mol Biol Cell. 2006 Oct;17(10):4228-36. Epub 2006 Jul 19. PMID:16855026 doi:E06-02-0098
  10. Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin JC, Hurt EC, Nehrbass U. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature. 2006 Jun 8;441(7094):770-3. PMID:16760982 doi:10.1038/nature04752
  11. Pascual-Garcia P, Govind CK, Queralt E, Cuenca-Bono B, Llopis A, Chavez S, Hinnebusch AG, Rodriguez-Navarro S. Sus1 is recruited to coding regions and functions during transcription elongation in association with SAGA and TREX2. Genes Dev. 2008 Oct 15;22(20):2811-22. doi: 10.1101/gad.483308. PMID:18923079 doi:10.1101/gad.483308
  12. Gonzalez-Aguilera C, Tous C, Gomez-Gonzalez B, Huertas P, Luna R, Aguilera A. The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability. Mol Biol Cell. 2008 Oct;19(10):4310-8. doi: 10.1091/mbc.E08-04-0355. Epub 2008, Jul 30. PMID:18667528 doi:10.1091/mbc.E08-04-0355
  13. Chekanova JA, Abruzzi KC, Rosbash M, Belostotsky DA. Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. RNA. 2008 Jan;14(1):66-77. Epub 2007 Nov 14. PMID:18003937 doi:10.1261/rna.764108
  14. Fischer T, Strasser K, Racz A, Rodriguez-Navarro S, Oppizzi M, Ihrig P, Lechner J, Hurt E. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 2002 Nov 1;21(21):5843-52. PMID:12411502
  15. Gallardo M, Luna R, Erdjument-Bromage H, Tempst P, Aguilera A. Nab2p and the Thp1p-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J Biol Chem. 2003 Jun 27;278(26):24225-32. Epub 2003 Apr 17. PMID:12702719 doi:http://dx.doi.org/10.1074/jbc.M302900200
  16. Jani D, Lutz S, Marshall NJ, Fischer T, Kohler A, Ellisdon AM, Hurt E, Stewart M. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol Cell. 2009 Mar 27;33(6):727-37. PMID:19328066 doi:10.1016/j.molcel.2009.01.033

3fwc, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA