4nme: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of proline utilization A (PutA) from Geobacter sulfurreducens PCA inactivated by N-propargylglycine== | ==Crystal structure of proline utilization A (PutA) from Geobacter sulfurreducens PCA inactivated by N-propargylglycine== | ||
<StructureSection load='4nme' size='340' side='right' caption='[[4nme]], [[Resolution|resolution]] 2.09Å' scene=''> | <StructureSection load='4nme' size='340' side='right' caption='[[4nme]], [[Resolution|resolution]] 2.09Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4nm9|4nm9]], [[4nma|4nma]], [[4nmb|4nmb]], [[4nmc|4nmc]], [[4nmd|4nmd]], [[4nmf|4nmf]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4nm9|4nm9]], [[4nma|4nma]], [[4nmb|4nmb]], [[4nmc|4nmc]], [[4nmd|4nmd]], [[4nmf|4nmf]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">putA, GSU3395 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=243231 GEOSL])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">putA, GSU3395 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=243231 GEOSL])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4nme FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4nme OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4nme RCSB], [http://www.ebi.ac.uk/pdbsum/4nme PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4nme FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4nme OCA], [http://pdbe.org/4nme PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4nme RCSB], [http://www.ebi.ac.uk/pdbsum/4nme PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4nme ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 16: | Line 17: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4nme" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Proline utilization A|Proline utilization A]] | |||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 21:20, 11 August 2016
Crystal structure of proline utilization A (PutA) from Geobacter sulfurreducens PCA inactivated by N-propargylglycineCrystal structure of proline utilization A (PutA) from Geobacter sulfurreducens PCA inactivated by N-propargylglycine
Structural highlights
Publication Abstract from PubMedProline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of l-proline to l-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004-residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal an elaborate and dynamic tunnel system featuring a 75-A-long tunnel that links the two active sites and six smaller tunnels that connect the main tunnel to the bulk medium. The locations of these tunnels and their responses to ligand binding and flavin reduction suggest hypotheses about how proline, water, and quinones enter the tunnel system and where l-glutamate exits. Kinetic measurements show that glutamate production from proline occurs without a lag phase, consistent with substrate channeling and implying that the observed tunnel is functionally relevant. Furthermore, the structure of reduced PutA complexed with menadione bisulfite reveals the elusive quinone-binding site. The benzoquinone binds within 4.0 A of the flavin si face, consistent with direct electron transfer. The location of the quinone site implies that the concave surface of the PutA dimer approaches the membrane. Altogether, these results provide insight into how PutAs couple proline oxidation to quinone reduction. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.,Singh H, Arentson BW, Becker DF, Tanner JJ Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3389-94. doi:, 10.1073/pnas.1321621111. Epub 2014 Feb 18. PMID:24550478[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|