4omm: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==Crystal structure of the intertwined dimer of the c-Src tyrosine kinase SH3 domain mutant N113S==
==Crystal structure of the intertwined dimer of the c-Src tyrosine kinase SH3 domain mutant N113S==
<StructureSection load='4omm' size='340' side='right' caption='[[4omm]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
<StructureSection load='4omm' size='340' side='right' caption='[[4omm]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
Line 6: Line 7:
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4jz3|4jz3]], [[4jz4|4jz4]], [[4hvu|4hvu]], [[4hvv|4hvv]], [[4hvw|4hvw]], [[3fj5|3fj5]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4jz3|4jz3]], [[4jz4|4jz4]], [[4hvu|4hvu]], [[4hvv|4hvv]], [[4hvw|4hvw]], [[3fj5|3fj5]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4omm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4omm OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4omm RCSB], [http://www.ebi.ac.uk/pdbsum/4omm PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4omm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4omm OCA], [http://pdbe.org/4omm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4omm RCSB], [http://www.ebi.ac.uk/pdbsum/4omm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4omm ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/SRC_CHICK SRC_CHICK]] Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors. Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates involved in this process. When cells adhere via focal adhesions to the extra-cellular matrix, signals are transmitted by integrins into the cell and result in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN). Also active at the sites of cell-cell contact adherens junctions and at gap junctions. Implicated in the regulation of pre-mRNA-processing. Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus.<ref>PMID:1717492</ref> <ref>PMID:8550628</ref>   
[[http://www.uniprot.org/uniprot/SRC_CHICK SRC_CHICK]] Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors. Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates involved in this process. When cells adhere via focal adhesions to the extra-cellular matrix, signals are transmitted by integrins into the cell and result in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN). Also active at the sites of cell-cell contact adherens junctions and at gap junctions. Implicated in the regulation of pre-mRNA-processing. Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus.<ref>PMID:1717492</ref> <ref>PMID:8550628</ref>   
==See Also==
*[[Tyrosine kinase|Tyrosine kinase]]
== References ==
== References ==
<references/>
<references/>

Revision as of 15:55, 11 August 2016

Crystal structure of the intertwined dimer of the c-Src tyrosine kinase SH3 domain mutant N113SCrystal structure of the intertwined dimer of the c-Src tyrosine kinase SH3 domain mutant N113S

Structural highlights

4omm is a 1 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Activity:Non-specific protein-tyrosine kinase, with EC number 2.7.10.2
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[SRC_CHICK] Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors. Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates involved in this process. When cells adhere via focal adhesions to the extra-cellular matrix, signals are transmitted by integrins into the cell and result in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN). Also active at the sites of cell-cell contact adherens junctions and at gap junctions. Implicated in the regulation of pre-mRNA-processing. Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus.[1] [2]

See Also

References

  1. Kremer NE, D'Arcangelo G, Thomas SM, DeMarco M, Brugge JS, Halegoua S. Signal transduction by nerve growth factor and fibroblast growth factor in PC12 cells requires a sequence of src and ras actions. J Cell Biol. 1991 Nov;115(3):809-19. PMID:1717492
  2. Simonson MS, Wang Y, Herman WH. Nuclear signaling by endothelin-1 requires Src protein-tyrosine kinases. J Biol Chem. 1996 Jan 5;271(1):77-82. PMID:8550628

4omm, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA