3fj5
Crystal structure of the c-src-SH3 domainCrystal structure of the c-src-SH3 domain
Structural highlights
FunctionSRC_CHICK Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors. Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates involved in this process. When cells adhere via focal adhesions to the extra-cellular matrix, signals are transmitted by integrins into the cell and result in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN). Also active at the sites of cell-cell contact adherens junctions and at gap junctions. Implicated in the regulation of pre-mRNA-processing. Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHere we report the first crystal structure of the SH3 domain of the cellular Src tyrosine kinase (c-Src-SH3) domain on its own. In the crystal two molecules of c-Src-SH3 exchange their -RT loops generating an intertwined dimer, in which the two SH3 units, preserving the binding site configuration, are oriented to allow simultaneous binding of two ligand molecules. The dimerization of c-Src-SH3 is induced, both in the crystal and in solution, by the binding of a PEG molecule at the dimer interface, indicating that this type of conformations are energetically close to the native structure. These results have important implications respect to in vivo oligomerization and amyloid aggregation. Intertwined dimeric structure for the SH3 domain of the c-Src tyrosine kinase induced by polyethylene glycol binding.,Camara-Artigas A, Martin-Garcia JM, Morel B, Ruiz-Sanz J, Luque I FEBS Lett. 2009 Feb 18;583(4):749-53. Epub 2009 Jan 29. PMID:19185573[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|