5ayc: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of Ruminococcus albus 4-O-beta-D-mannosyl-D-glucose phosphorylase (RaMP1) in complexes with sulfate and 4-O-beta-D-mannosyl-D-glucose== | |||
<StructureSection load='5ayc' size='340' side='right' caption='[[5ayc]], [[Resolution|resolution]] 1.90Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[5ayc]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5AYC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5AYC FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5aye|5aye]], [[5ayd|5ayd]], [[5ay9|5ay9]]</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/4-O-beta-D-mannosyl-D-glucose_phosphorylase 4-O-beta-D-mannosyl-D-glucose phosphorylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.281 2.4.1.281] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ayc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ayc OCA], [http://pdbe.org/5ayc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ayc RCSB], [http://www.ebi.ac.uk/pdbsum/5ayc PDBsum]</span></td></tr> | |||
</table> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/MGP_RUMA7 MGP_RUMA7]] Converts 4-O-beta-D-mannopyranosyl-D-glucopyranose (Man-Glc) to mannose 1-phosphate (Man1P) and glucose. Involved in a mannan catabolic pathway which feeds into glycolysis.[HAMAP-Rule:MF_00928]<ref>PMID:23093406</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
In Ruminococcus albus, 4-O-beta-d-mannosyl-d-glucose phosphorylase (RaMP1) and beta-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze beta-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-beta-d-mannosyl-d-glucose and RaMP2 with/without beta-(1-->4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. | |||
Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.,Ye Y, Saburi W, Odaka R, Kato K, Sakurai N, Komoda K, Nishimoto M, Kitaoka M, Mori H, Yao M FEBS Lett. 2016 Mar;590(6):828-37. doi: 10.1002/1873-3468.12105. Epub 2016 Mar 4. PMID:26913570<ref>PMID:26913570</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5ayc" style="background-color:#fffaf0;"></div> | |||
[[Category: | == References == | ||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: 4-O-beta-D-mannosyl-D-glucose phosphorylase]] | |||
[[Category: Kato, K]] | [[Category: Kato, K]] | ||
[[Category: Saburi, W]] | [[Category: Saburi, W]] | ||
[[Category: Yao, M]] | |||
[[Category: Ye, Y]] | |||
[[Category: Glycoside hydrolase family 130]] | |||
[[Category: Transferase]] |
Revision as of 20:29, 10 May 2016
Crystal structure of Ruminococcus albus 4-O-beta-D-mannosyl-D-glucose phosphorylase (RaMP1) in complexes with sulfate and 4-O-beta-D-mannosyl-D-glucoseCrystal structure of Ruminococcus albus 4-O-beta-D-mannosyl-D-glucose phosphorylase (RaMP1) in complexes with sulfate and 4-O-beta-D-mannosyl-D-glucose
Structural highlights
Function[MGP_RUMA7] Converts 4-O-beta-D-mannopyranosyl-D-glucopyranose (Man-Glc) to mannose 1-phosphate (Man1P) and glucose. Involved in a mannan catabolic pathway which feeds into glycolysis.[HAMAP-Rule:MF_00928][1] Publication Abstract from PubMedIn Ruminococcus albus, 4-O-beta-d-mannosyl-d-glucose phosphorylase (RaMP1) and beta-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze beta-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-beta-d-mannosyl-d-glucose and RaMP2 with/without beta-(1-->4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.,Ye Y, Saburi W, Odaka R, Kato K, Sakurai N, Komoda K, Nishimoto M, Kitaoka M, Mori H, Yao M FEBS Lett. 2016 Mar;590(6):828-37. doi: 10.1002/1873-3468.12105. Epub 2016 Mar 4. PMID:26913570[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|