2f2c: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2f2c ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 32: | Line 32: | ||
==See Also== | ==See Also== | ||
*[[Cyclin|Cyclin]] | *[[Cyclin|Cyclin]] | ||
*[[Cyclin-dependent kinase|Cyclin-dependent kinase]] | *[[Cyclin-dependent kinase|Cyclin-dependent kinase]] |
Revision as of 05:44, 10 February 2016
X-ray structure of human CDK6-Vcyclinwith the inhibitor aminopurvalanolX-ray structure of human CDK6-Vcyclinwith the inhibitor aminopurvalanol
Structural highlights
Function[CGH2_SHV21] May be highly relevant to the process of cellular transformation and rapid T-cell proliferation effected by HVS during latent infections of T-cells in susceptible hosts. [CDK6_HUMAN] Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and regulates negatively cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans.[1] [2] [3] [4] [5] [6] [7] [8] [9] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCyclin-dependent kinases (CDKs) are key players in cell cycle control, and genetic alterations of CDKs and their regulators have been linked to a variety of cancers. Hence, CDKs are obvious targets for therapeutic intervention in various proliferative diseases, including cancer. To date, drug design efforts have mostly focused on CDK2 because methods for crystallization of its inhibitor complexes have been well established. CDK4 and CDK6, however, may be at least as important as enzymes for cell cycle regulation and could provide alternative treatment options. We describe here two complex structures of human CDK6 with a very specific kinase inhibitor, PD0332991, which is based on a pyrido[2,3-d]pyrimidin-7-one scaffold, and with the less specific aminopurvalanol inhibitor. Analysis of the structures suggests that relatively small conformational differences between CDK2 and CDK6 in the hinge region are contributing to the inhibitor specificity by inducing changes in the inhibitor orientation that lead to sterical clashes in CDK2 but not CDK6. These complex structures provide valuable insights for the future development of CDK-specific inhibitors. Toward understanding the structural basis of cyclin-dependent kinase 6 specific inhibition.,Lu H, Schulze-Gahmen U J Med Chem. 2006 Jun 29;49(13):3826-31. PMID:16789739[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|