2fqd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2fqd ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 23:16, 9 February 2016

Crystal Structures of E. coli Laccase CueO under different copper binding situationsCrystal Structures of E. coli Laccase CueO under different copper binding situations

Structural highlights

2fqd is a 1 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

CueO protein is a hypothetical bacterial laccase and a good laccase candidate for large scale industrial application. Four CueO crystal structures were determined at different copper concentrations. Low copper occupancy in apo-CueO and slow copper reconstitution process in CueO with exogenous copper were demonstrated. These observations well explain the copper dependence of CueO oxidase activity. Structural comparison between CueO and other three fungal laccase proteins indicates that Glu106 in CueO constitutes the primary counter-work for reconstitution of the trinuclear copper site. Mutation of Glu106 to a Phe enhanced CueO oxidation activity and supported this hypothesis. In addition, an extra alpha-helix from Leu351 to Gly378 covers substrate biding pocket of CueO and might compromises the electron transfer from substrate to type I copper.

Crystal structures of E. coli laccase CueO at different copper concentrations.,Li X, Wei Z, Zhang M, Peng X, Yu G, Teng M, Gong W Biochem Biophys Res Commun. 2007 Mar 2;354(1):21-6. Epub 2006 Dec 22. PMID:17217912[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Li X, Wei Z, Zhang M, Peng X, Yu G, Teng M, Gong W. Crystal structures of E. coli laccase CueO at different copper concentrations. Biochem Biophys Res Commun. 2007 Mar 2;354(1):21-6. Epub 2006 Dec 22. PMID:17217912 doi:10.1016/j.bbrc.2006.12.116

2fqd, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA